Adaptive Virtual Fixture Based on Learning Trajectory Distribution for Comanipulation Tasks

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shaqi Luo;Min Cheng;Ruqi Ding
{"title":"Adaptive Virtual Fixture Based on Learning Trajectory Distribution for Comanipulation Tasks","authors":"Shaqi Luo;Min Cheng;Ruqi Ding","doi":"10.1109/THMS.2025.3540123","DOIUrl":null,"url":null,"abstract":"Virtual fixture is a powerful tool to improve safety and efficiency for co-manipulation tasks. However, traditional virtual fixtures with constant stiffness are inadequate for scenarios where robots need to leave the constraints to perform tasks. To address this, we propose an adaptive virtual fixture based on the motion refinement tube, which dynamically adjusts the guiding force according to the distribution of trajectories. To prevent tube deformation in the Cartesian space due to the neglect of off-diagonal elements of covariance matrices, the refinement tube radii and nonlinear stiffness terms are computed in local coordinate systems based on the decomposed covariance matrix. An energy-tank-based passivity controller is designed to ensure system stability when employing the virtual fixture with state-dependent stiffness terms. In the validation tests with 18 participants, the proposed method showed improvements in task efficiency (18.69% increase) and collision avoidance (97.87% reduction) for a typical pick-and-place task with scattered materials. It also provided better subjective experiences of the users than traditional virtual fixtures. Meanwhile, compared with the method that neglects off-diagonal elements of the covariance matrix, the proposed method exhibited a 4.28% efficiency improvement and a 40.42% decrease in collision occurrences.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":"55 2","pages":"165-175"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909982/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual fixture is a powerful tool to improve safety and efficiency for co-manipulation tasks. However, traditional virtual fixtures with constant stiffness are inadequate for scenarios where robots need to leave the constraints to perform tasks. To address this, we propose an adaptive virtual fixture based on the motion refinement tube, which dynamically adjusts the guiding force according to the distribution of trajectories. To prevent tube deformation in the Cartesian space due to the neglect of off-diagonal elements of covariance matrices, the refinement tube radii and nonlinear stiffness terms are computed in local coordinate systems based on the decomposed covariance matrix. An energy-tank-based passivity controller is designed to ensure system stability when employing the virtual fixture with state-dependent stiffness terms. In the validation tests with 18 participants, the proposed method showed improvements in task efficiency (18.69% increase) and collision avoidance (97.87% reduction) for a typical pick-and-place task with scattered materials. It also provided better subjective experiences of the users than traditional virtual fixtures. Meanwhile, compared with the method that neglects off-diagonal elements of the covariance matrix, the proposed method exhibited a 4.28% efficiency improvement and a 40.42% decrease in collision occurrences.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信