Step Count Print: A Physical Activity-Based Biometric Identifier for User Identification and Authentication

IF 5
Zhen Chen;Keqin Shi;Weiqiang Sun
{"title":"Step Count Print: A Physical Activity-Based Biometric Identifier for User Identification and Authentication","authors":"Zhen Chen;Keqin Shi;Weiqiang Sun","doi":"10.1109/TBIOM.2024.3466269","DOIUrl":null,"url":null,"abstract":"Step count is one of the most widely used physical activity data and is easily accessible through smart phones and wearable devices. It records the intensity and happening time of a user’s physical activities, and often reflects a users’ unique way of living. Incorporation of step count into biometric systems may thus offer an opportunity to develop innovative, user-friendly and non-invasive strategies of user identification and authentication. In this paper, we propose Step Count Print (SCP), a physical activity-based novel biometric identifier. Extracted from coarse-grained minute-level physical activity data (step counts), SCP contains features, including user step cadence distribution and average step distribution etc., that reflect an individual’s physical activity behavior. With data collected from 100 users in a five-year long period, we conducted an ablation study to demonstrate the non-redundancy of SCP in user identification and authentication scenarios using commonly used machine learning algorithms. The results show that SCP can achieve a Rank-1 rate of up to 75.0% in user identification scenarios and an average accuracy of 92.3% in user authentication scenarios. In different classification algorithms, the user’s accuracy histogram is drawn to demonstrate the universality of SCP and its effectiveness across a range of scenarios and use cases.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"7 2","pages":"210-224"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10690242/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Step count is one of the most widely used physical activity data and is easily accessible through smart phones and wearable devices. It records the intensity and happening time of a user’s physical activities, and often reflects a users’ unique way of living. Incorporation of step count into biometric systems may thus offer an opportunity to develop innovative, user-friendly and non-invasive strategies of user identification and authentication. In this paper, we propose Step Count Print (SCP), a physical activity-based novel biometric identifier. Extracted from coarse-grained minute-level physical activity data (step counts), SCP contains features, including user step cadence distribution and average step distribution etc., that reflect an individual’s physical activity behavior. With data collected from 100 users in a five-year long period, we conducted an ablation study to demonstrate the non-redundancy of SCP in user identification and authentication scenarios using commonly used machine learning algorithms. The results show that SCP can achieve a Rank-1 rate of up to 75.0% in user identification scenarios and an average accuracy of 92.3% in user authentication scenarios. In different classification algorithms, the user’s accuracy histogram is drawn to demonstrate the universality of SCP and its effectiveness across a range of scenarios and use cases.
步数打印:用于用户识别和认证的基于物理活动的生物识别标识符
步数是最广泛使用的身体活动数据之一,可以通过智能手机和可穿戴设备轻松访问。它记录了用户身体活动的强度和发生时间,往往反映了用户独特的生活方式。因此,将步数纳入生物识别系统可能为开发创新的、用户友好的和非侵入性的用户识别和认证策略提供机会。在本文中,我们提出了步数打印(SCP),一种基于身体活动的新型生物识别标识。SCP从粗粒度的分钟级体力活动数据(步数)中提取,包含反映个人体力活动行为的特征,包括用户步频分布和平均步数分布等。在长达5年的时间里,我们收集了100个用户的数据,进行了一项消纳研究,以证明使用常用机器学习算法的SCP在用户识别和认证场景中的非冗余性。结果表明,SCP在用户身份识别场景下的Rank-1识别率高达75.0%,在用户认证场景下的平均准确率为92.3%。在不同的分类算法中,绘制用户的准确率直方图,以证明SCP的通用性及其在一系列场景和用例中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信