Nonparametric Bootstrap Likelihood Estimation to Investigate the Chance Set-Up on Clustering Results

Ammar Elnour;Wencheng Yang;Yan Li
{"title":"Nonparametric Bootstrap Likelihood Estimation to Investigate the Chance Set-Up on Clustering Results","authors":"Ammar Elnour;Wencheng Yang;Yan Li","doi":"10.1109/OJCS.2025.3545261","DOIUrl":null,"url":null,"abstract":"Clustering algorithms are widely used in the knowledge discovery domain, but concerns and questions about the validity of the results must be considered. The datasets commonly used for clustering tasks are often large and scale-free, making conventional statistical techniques inadequate for analyzing result uncertainty. This issue applies to most outcomes obtained from other knowledge discovery techniques, such as machine learning and statistical learning. Traditional statistical methods assume data follows standard distributions, whereas resampling and bootstrapping methods offer more accurate and reliable alternatives. This article introduces a method that employs bootstrap likelihood estimation to infer the uncertainty of generated clustering structures. We first calculated the clustering error in the original dataset and then utilized the proposed method to estimate its nonparametric bootstrapped likelihood. By comparing these two values, we can establish a nonparametric significance testing framework that directly determines the validity of the result. To evaluate the effectiveness of our method, we conducted experiments using synthetic and real datasets. The results demonstrate that our method can successfully validate clustering results.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"438-448"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902121","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10902121/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering algorithms are widely used in the knowledge discovery domain, but concerns and questions about the validity of the results must be considered. The datasets commonly used for clustering tasks are often large and scale-free, making conventional statistical techniques inadequate for analyzing result uncertainty. This issue applies to most outcomes obtained from other knowledge discovery techniques, such as machine learning and statistical learning. Traditional statistical methods assume data follows standard distributions, whereas resampling and bootstrapping methods offer more accurate and reliable alternatives. This article introduces a method that employs bootstrap likelihood estimation to infer the uncertainty of generated clustering structures. We first calculated the clustering error in the original dataset and then utilized the proposed method to estimate its nonparametric bootstrapped likelihood. By comparing these two values, we can establish a nonparametric significance testing framework that directly determines the validity of the result. To evaluate the effectiveness of our method, we conducted experiments using synthetic and real datasets. The results demonstrate that our method can successfully validate clustering results.
用非参数 Bootstrap Likelihood 估计法研究聚类结果的机会设置
聚类算法在知识发现领域得到了广泛的应用,但聚类算法结果的有效性问题必须加以考虑。通常用于聚类任务的数据集通常是大型和无标度的,使得传统的统计技术不足以分析结果的不确定性。这个问题适用于从其他知识发现技术(如机器学习和统计学习)获得的大多数结果。传统的统计方法假设数据遵循标准分布,而重采样和自举方法提供了更准确和可靠的替代方法。本文介绍了一种利用自举似然估计来推断生成聚类结构的不确定性的方法。我们首先计算原始数据集的聚类误差,然后利用该方法估计其非参数自举似然。通过比较这两个值,我们可以建立一个直接决定结果有效性的非参数显著性检验框架。为了评估我们方法的有效性,我们使用合成数据集和真实数据集进行了实验。结果表明,该方法可以成功地验证聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信