Correlations Between Biomechanical Variables and Subjective Measures of Satisfaction While Using a Passive Upper-Limb Exoskeleton for Overhead Tasks in the Field

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sungwoo Park;Moon Ki Jung;Kyujung Kim;HyunSeop Lim;JuYoung Yoon;Dong Jin Hyun
{"title":"Correlations Between Biomechanical Variables and Subjective Measures of Satisfaction While Using a Passive Upper-Limb Exoskeleton for Overhead Tasks in the Field","authors":"Sungwoo Park;Moon Ki Jung;Kyujung Kim;HyunSeop Lim;JuYoung Yoon;Dong Jin Hyun","doi":"10.1109/THMS.2025.3532358","DOIUrl":null,"url":null,"abstract":"This article proposes a novel evaluation approach on wearing passive upper-limb exoskeletons for overhead tasks in real-world automotive manufacturing lines. We determined that wearing exoskeletons reduced the biomechanical efforts of workers measured by joint kinematics and electromyography as well as the estimated shoulder joint reaction forces and torques derived from simulation. These quantitatively measured variables were statistically associated with subjective measures collected through satisfaction questionnaires. We specifically found that participants increased the shoulder flexion and abduction angles as well as the shoulder range of motion while wearing exoskeletons. Participants also reduced muscle activities, joint torques for shoulder flexion, and reaction forces exerted on the shoulder joints while wearing exoskeletons. Interestingly, our analysis also found that the increased shoulder movement while wearing the device was negatively associated with the satisfaction level. This indicates that although the assistance provided by the device allows users to perform a wider range of arm lifting movements, the deviation from their original movement with the device may lead to decreases in satisfaction levels. This integrative approach using biomechanics and ergonomics suggests that we can potentially predict the subjective scale of satisfaction based on biomechanical variables and preliminarily evaluate the usability and comfort while wearing exoskeletons in real-world settings.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":"55 2","pages":"176-184"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10887534/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a novel evaluation approach on wearing passive upper-limb exoskeletons for overhead tasks in real-world automotive manufacturing lines. We determined that wearing exoskeletons reduced the biomechanical efforts of workers measured by joint kinematics and electromyography as well as the estimated shoulder joint reaction forces and torques derived from simulation. These quantitatively measured variables were statistically associated with subjective measures collected through satisfaction questionnaires. We specifically found that participants increased the shoulder flexion and abduction angles as well as the shoulder range of motion while wearing exoskeletons. Participants also reduced muscle activities, joint torques for shoulder flexion, and reaction forces exerted on the shoulder joints while wearing exoskeletons. Interestingly, our analysis also found that the increased shoulder movement while wearing the device was negatively associated with the satisfaction level. This indicates that although the assistance provided by the device allows users to perform a wider range of arm lifting movements, the deviation from their original movement with the device may lead to decreases in satisfaction levels. This integrative approach using biomechanics and ergonomics suggests that we can potentially predict the subjective scale of satisfaction based on biomechanical variables and preliminarily evaluate the usability and comfort while wearing exoskeletons in real-world settings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信