Optimizing stability of heart disease prediction across imbalanced learning with interpretable Grow Network

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Simon Bin Akter , Sumya Akter , Rakibul Hasan , Md Mahadi Hasan , David Eisenberg , Riasat Azim , Jorge Fresneda Fernandez , Tanmoy Sarkar Pias
{"title":"Optimizing stability of heart disease prediction across imbalanced learning with interpretable Grow Network","authors":"Simon Bin Akter ,&nbsp;Sumya Akter ,&nbsp;Rakibul Hasan ,&nbsp;Md Mahadi Hasan ,&nbsp;David Eisenberg ,&nbsp;Riasat Azim ,&nbsp;Jorge Fresneda Fernandez ,&nbsp;Tanmoy Sarkar Pias","doi":"10.1016/j.cmpb.2025.108702","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objectives:</h3><div>Heart disease prediction models often face stability challenges when applied to public datasets due to significant class imbalances, unlike the more balanced benchmark datasets. These imbalances can adversely affect various stages of prediction, including feature selection, sampling, and modeling, leading to skewed performance, with one class often being favored over another.</div></div><div><h3>Methods:</h3><div>To enhance stability, this study proposes a Grow Network (GrowNet) architecture, which dynamically configures itself based on the data’s characteristics. To enhance GrowNet’s stability, this study proposes the use of TriDyn Dependence feature selection and Adaptive Refinement sampling, which ensure the selection of relevant features across imbalanced data and effectively manage class imbalance during training.</div></div><div><h3>Results:</h3><div>When evaluated on the benchmark UCI heart disease dataset, GrowNet has outperformed other models, achieving a specificity of 92%, sensitivity of 88%, precision of 90%, and F1 score of 90%. Further evaluation on three public datasets from the Behavioral Risk Factor Surveillance System (BRFSS), where heart disease cases constitute only about 6% of the data, has demonstrated GrowNet’s ability to maintain balanced performance, with an average specificity, sensitivity, and AUC-ROC of 77.67%, 81.67%, and 89.67%, respectively, while other models have exhibited instability. This represents a 22.8% improvement in handling class imbalance compared to prior studies. Additional tests on two public datasets from the National Health Interview Survey (NHIS) have confirmed GrowNet’s robustness and generalizability, with an average specificity, sensitivity, and AUC-ROC of 80.5%, 82.5%, and 90%, respectively, while other models have continued to demonstrate instability.</div></div><div><h3>Discussion:</h3><div>To enhance transparency, this study incorporates SHapley Additive exPlanations (SHAP) analysis, enabling healthcare professionals to understand the decision-making process and identify key risk factors for heart disease, such as bronchitis in midlife, renal dysfunction in the elderly, and depressive disorders in individuals aged 35-44.</div></div><div><h3>Conclusion:</h3><div>This study presents a robust, interpretable model to assist healthcare professionals in cost-effective, early heart disease detection by focusing on key risk factors, ultimately improving patient outcomes.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"265 ","pages":"Article 108702"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001191","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives:

Heart disease prediction models often face stability challenges when applied to public datasets due to significant class imbalances, unlike the more balanced benchmark datasets. These imbalances can adversely affect various stages of prediction, including feature selection, sampling, and modeling, leading to skewed performance, with one class often being favored over another.

Methods:

To enhance stability, this study proposes a Grow Network (GrowNet) architecture, which dynamically configures itself based on the data’s characteristics. To enhance GrowNet’s stability, this study proposes the use of TriDyn Dependence feature selection and Adaptive Refinement sampling, which ensure the selection of relevant features across imbalanced data and effectively manage class imbalance during training.

Results:

When evaluated on the benchmark UCI heart disease dataset, GrowNet has outperformed other models, achieving a specificity of 92%, sensitivity of 88%, precision of 90%, and F1 score of 90%. Further evaluation on three public datasets from the Behavioral Risk Factor Surveillance System (BRFSS), where heart disease cases constitute only about 6% of the data, has demonstrated GrowNet’s ability to maintain balanced performance, with an average specificity, sensitivity, and AUC-ROC of 77.67%, 81.67%, and 89.67%, respectively, while other models have exhibited instability. This represents a 22.8% improvement in handling class imbalance compared to prior studies. Additional tests on two public datasets from the National Health Interview Survey (NHIS) have confirmed GrowNet’s robustness and generalizability, with an average specificity, sensitivity, and AUC-ROC of 80.5%, 82.5%, and 90%, respectively, while other models have continued to demonstrate instability.

Discussion:

To enhance transparency, this study incorporates SHapley Additive exPlanations (SHAP) analysis, enabling healthcare professionals to understand the decision-making process and identify key risk factors for heart disease, such as bronchitis in midlife, renal dysfunction in the elderly, and depressive disorders in individuals aged 35-44.

Conclusion:

This study presents a robust, interpretable model to assist healthcare professionals in cost-effective, early heart disease detection by focusing on key risk factors, ultimately improving patient outcomes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信