Constructing stable, high-order finite-difference operators on point clouds over complex geometries

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jason Hicken, Ge Yan , Sharanjeet Kaur
{"title":"Constructing stable, high-order finite-difference operators on point clouds over complex geometries","authors":"Jason Hicken,&nbsp;Ge Yan ,&nbsp;Sharanjeet Kaur","doi":"10.1016/j.jcp.2025.113940","DOIUrl":null,"url":null,"abstract":"<div><div>High-order difference operators with the summation-by-parts (SBP) property can be used to build stable discretizations of hyperbolic conservation laws; however, most high-order SBP operators require a conforming, high-order mesh for the domain of interest. To circumvent this requirement, we present an algorithm for building high-order, diagonal-norm, first-derivative SBP operators on point clouds over level-set geometries. The algorithm is <em>not</em> mesh-free, since it uses a Cartesian cut-cell mesh to define the sparsity pattern of the operators and to provide intermediate quadrature rules; however, the mesh is generated automatically and can be discarded once the SBP operators have been constructed. Using this temporary mesh, we construct local, cell-based SBP difference operators that are assembled into global SBP operators. We identify conditions for the existence of a positive-definite diagonal mass matrix, and we compute the diagonal norm by solving a sparse system of linear inequalities using an interior-point algorithm. We also describe an artificial dissipation operator that complements the first-derivative operators when solving hyperbolic problems, although the dissipation is not required for stability. The numerical results confirm the conditions under which a diagonal norm exists and study the distribution of the norm's entries. In addition, the results verify the accuracy and stability of the point-cloud SBP operators using the linear advection equation.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"532 ","pages":"Article 113940"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002232","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

High-order difference operators with the summation-by-parts (SBP) property can be used to build stable discretizations of hyperbolic conservation laws; however, most high-order SBP operators require a conforming, high-order mesh for the domain of interest. To circumvent this requirement, we present an algorithm for building high-order, diagonal-norm, first-derivative SBP operators on point clouds over level-set geometries. The algorithm is not mesh-free, since it uses a Cartesian cut-cell mesh to define the sparsity pattern of the operators and to provide intermediate quadrature rules; however, the mesh is generated automatically and can be discarded once the SBP operators have been constructed. Using this temporary mesh, we construct local, cell-based SBP difference operators that are assembled into global SBP operators. We identify conditions for the existence of a positive-definite diagonal mass matrix, and we compute the diagonal norm by solving a sparse system of linear inequalities using an interior-point algorithm. We also describe an artificial dissipation operator that complements the first-derivative operators when solving hyperbolic problems, although the dissipation is not required for stability. The numerical results confirm the conditions under which a diagonal norm exists and study the distribution of the norm's entries. In addition, the results verify the accuracy and stability of the point-cloud SBP operators using the linear advection equation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信