{"title":"Constructing stable, high-order finite-difference operators on point clouds over complex geometries","authors":"Jason Hicken, Ge Yan , Sharanjeet Kaur","doi":"10.1016/j.jcp.2025.113940","DOIUrl":null,"url":null,"abstract":"<div><div>High-order difference operators with the summation-by-parts (SBP) property can be used to build stable discretizations of hyperbolic conservation laws; however, most high-order SBP operators require a conforming, high-order mesh for the domain of interest. To circumvent this requirement, we present an algorithm for building high-order, diagonal-norm, first-derivative SBP operators on point clouds over level-set geometries. The algorithm is <em>not</em> mesh-free, since it uses a Cartesian cut-cell mesh to define the sparsity pattern of the operators and to provide intermediate quadrature rules; however, the mesh is generated automatically and can be discarded once the SBP operators have been constructed. Using this temporary mesh, we construct local, cell-based SBP difference operators that are assembled into global SBP operators. We identify conditions for the existence of a positive-definite diagonal mass matrix, and we compute the diagonal norm by solving a sparse system of linear inequalities using an interior-point algorithm. We also describe an artificial dissipation operator that complements the first-derivative operators when solving hyperbolic problems, although the dissipation is not required for stability. The numerical results confirm the conditions under which a diagonal norm exists and study the distribution of the norm's entries. In addition, the results verify the accuracy and stability of the point-cloud SBP operators using the linear advection equation.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"532 ","pages":"Article 113940"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002232","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
High-order difference operators with the summation-by-parts (SBP) property can be used to build stable discretizations of hyperbolic conservation laws; however, most high-order SBP operators require a conforming, high-order mesh for the domain of interest. To circumvent this requirement, we present an algorithm for building high-order, diagonal-norm, first-derivative SBP operators on point clouds over level-set geometries. The algorithm is not mesh-free, since it uses a Cartesian cut-cell mesh to define the sparsity pattern of the operators and to provide intermediate quadrature rules; however, the mesh is generated automatically and can be discarded once the SBP operators have been constructed. Using this temporary mesh, we construct local, cell-based SBP difference operators that are assembled into global SBP operators. We identify conditions for the existence of a positive-definite diagonal mass matrix, and we compute the diagonal norm by solving a sparse system of linear inequalities using an interior-point algorithm. We also describe an artificial dissipation operator that complements the first-derivative operators when solving hyperbolic problems, although the dissipation is not required for stability. The numerical results confirm the conditions under which a diagonal norm exists and study the distribution of the norm's entries. In addition, the results verify the accuracy and stability of the point-cloud SBP operators using the linear advection equation.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.