Biodegradation of crude oil by newly enriched biosurfactant-producing bacterial consortium

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jinhui Liu , Yuke kong , Junchao Pan , Mengjiao Qiao , Xinling Ruan , Yangyang Wang
{"title":"Biodegradation of crude oil by newly enriched biosurfactant-producing bacterial consortium","authors":"Jinhui Liu ,&nbsp;Yuke kong ,&nbsp;Junchao Pan ,&nbsp;Mengjiao Qiao ,&nbsp;Xinling Ruan ,&nbsp;Yangyang Wang","doi":"10.1016/j.enzmictec.2025.110635","DOIUrl":null,"url":null,"abstract":"<div><div>Crude oil contamination in different environmental media is a global environmental problem, biodegradation is a potential, environmentally friendly method for remediating this pollutant. In the present study, a biosurfactant-producing and crude oil degrading bacterial consortium (S1) was enriched from a contaminated soil, and its degradation efficiency of crude oil in solution and soil under the optimum conditions was studied. The results showed that the predominant species of S1 were <em>Pseudomonadaceae</em> and <em>Alcaligenaceae</em>. S1 could produce surfactant, with the maximum content of 2.27 g/L, which was identified as rhamnolipids. The optimal pH, temperature, and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> concentration for crude oil degradation were 7.0, 40 °C, and 3 g/L, respectively, with the maximum degradation efficiency of 51.51 % after 7 days incubation. Plackett-Burman experiment and response surface methodology demonstrated that Cu, Co, and Zn could significantly promote the degradation of crude oil, with their optimum concentration of 0.36, 0.88, and 0.60 mg/L, respectively. Under the optimum conditions, the highest crude oil degradation efficiency reached 53.23 % within 7 days. Kinetic analysis showed that the first-order reaction kinetic was suitable for describing the degradation of crude oil by S1, with a half-life of 4.57 days. Furthermore, S1 also could degrade the crude oil in soil efficiently, with the maximum degradation efficiency of 60.34 % within 56 days. These results indicate that S1 has great potential for practical application in remediation of crude oil contamination.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"187 ","pages":"Article 110635"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000559","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Crude oil contamination in different environmental media is a global environmental problem, biodegradation is a potential, environmentally friendly method for remediating this pollutant. In the present study, a biosurfactant-producing and crude oil degrading bacterial consortium (S1) was enriched from a contaminated soil, and its degradation efficiency of crude oil in solution and soil under the optimum conditions was studied. The results showed that the predominant species of S1 were Pseudomonadaceae and Alcaligenaceae. S1 could produce surfactant, with the maximum content of 2.27 g/L, which was identified as rhamnolipids. The optimal pH, temperature, and (NH4)2SO4 concentration for crude oil degradation were 7.0, 40 °C, and 3 g/L, respectively, with the maximum degradation efficiency of 51.51 % after 7 days incubation. Plackett-Burman experiment and response surface methodology demonstrated that Cu, Co, and Zn could significantly promote the degradation of crude oil, with their optimum concentration of 0.36, 0.88, and 0.60 mg/L, respectively. Under the optimum conditions, the highest crude oil degradation efficiency reached 53.23 % within 7 days. Kinetic analysis showed that the first-order reaction kinetic was suitable for describing the degradation of crude oil by S1, with a half-life of 4.57 days. Furthermore, S1 also could degrade the crude oil in soil efficiently, with the maximum degradation efficiency of 60.34 % within 56 days. These results indicate that S1 has great potential for practical application in remediation of crude oil contamination.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信