Frantz Ossa Ossa , Jan D. Kramers , Axel Hofmann , Ronny Schoenberg , Andrea Agangi , Georgy Belyanin , Marlina A. Elburg , Dan Gregory , Igor M. Villa , Andrey Bekker
{"title":"Time constraints for the Lomagundi excursion and the earliest known Paleoproterozoic macroscopic organisms from the Francevillian Group, Gabon","authors":"Frantz Ossa Ossa , Jan D. Kramers , Axel Hofmann , Ronny Schoenberg , Andrea Agangi , Georgy Belyanin , Marlina A. Elburg , Dan Gregory , Igor M. Villa , Andrey Bekker","doi":"10.1016/j.chemgeo.2025.122749","DOIUrl":null,"url":null,"abstract":"<div><div>The Francevillian Group, deposited during the Lomagundi carbon isotope excursion (LE), recently revealed evidence for complex and diverse Paleoproterozoic biota. This biota is preserved as pyritized and non-pyritized macrofossil structures hosted in black shale deposited in an oxygenated, open-marine environment. However, the timing of the LE, and the time when these macroscopic organisms evolved is still poorly constrained. Here, we present U-Pb ages for zircons separated from coeval volcaniclastic sandstone, <sup>207</sup>Pb/<sup>206</sup>Pb model ages for pyrite preserving the macrofossils, and <sup>40</sup>Ar/<sup>39</sup>Ar dates for K-rich clay minerals from the fossiliferous black shales. The youngest group of zircons yields a weighted average <sup>207</sup>Pb/<sup>206</sup>Pb age of 2132 ± 4 Ma, which is considered as a maximum depositional age for the strata that record the LE and host the earliest known, macroscopic multicellular organisms. By contrast, the <sup>207</sup>Pb/<sup>206</sup>Pb dates of pyritized fossils, scattering between ca. 2085 and 2070 Ma, with a weighted average of 2077 ± 17 Ma, reflect early diagenesis in the Francevillian basin and thus provide a minimum age for fossiliferous strata. This range of ages overlaps with reproducible <sup>40</sup>Ar/<sup>39</sup>Ar dates and the ages for other open-marine sedimentary successions that record the LE in both shallow- and deep-marine environments. Taken together, the data demonstrate that the synchronicity of the record of the Lomagundi carbon isotope excursion in shallow- and deep-marine carbonates worldwide is consistent with a global biogeochemical signature of the Paleoproterozoic oceans, with its latest stage, between ca. 2.13 and 2.08 Ga, being preserved in the fossiliferous Francevillian Group strata. Further, the results also suggest that <sup>40</sup>Ar/<sup>39</sup>Ar dating of K-rich clay minerals extracted from black shale can be used to constrain the depositional and/or early diagenetic age of more than 2-billion-years old sedimentary strata not affected by high-temperature hydrothermal and metamorphic overprint.</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"682 ","pages":"Article 122749"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254125001391","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Francevillian Group, deposited during the Lomagundi carbon isotope excursion (LE), recently revealed evidence for complex and diverse Paleoproterozoic biota. This biota is preserved as pyritized and non-pyritized macrofossil structures hosted in black shale deposited in an oxygenated, open-marine environment. However, the timing of the LE, and the time when these macroscopic organisms evolved is still poorly constrained. Here, we present U-Pb ages for zircons separated from coeval volcaniclastic sandstone, 207Pb/206Pb model ages for pyrite preserving the macrofossils, and 40Ar/39Ar dates for K-rich clay minerals from the fossiliferous black shales. The youngest group of zircons yields a weighted average 207Pb/206Pb age of 2132 ± 4 Ma, which is considered as a maximum depositional age for the strata that record the LE and host the earliest known, macroscopic multicellular organisms. By contrast, the 207Pb/206Pb dates of pyritized fossils, scattering between ca. 2085 and 2070 Ma, with a weighted average of 2077 ± 17 Ma, reflect early diagenesis in the Francevillian basin and thus provide a minimum age for fossiliferous strata. This range of ages overlaps with reproducible 40Ar/39Ar dates and the ages for other open-marine sedimentary successions that record the LE in both shallow- and deep-marine environments. Taken together, the data demonstrate that the synchronicity of the record of the Lomagundi carbon isotope excursion in shallow- and deep-marine carbonates worldwide is consistent with a global biogeochemical signature of the Paleoproterozoic oceans, with its latest stage, between ca. 2.13 and 2.08 Ga, being preserved in the fossiliferous Francevillian Group strata. Further, the results also suggest that 40Ar/39Ar dating of K-rich clay minerals extracted from black shale can be used to constrain the depositional and/or early diagenetic age of more than 2-billion-years old sedimentary strata not affected by high-temperature hydrothermal and metamorphic overprint.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.