Electrocardiogram-based deep learning to predict left ventricular systolic dysfunction in paediatric and adult congenital heart disease in the USA: a multicentre modelling study
Joshua Mayourian MD , Ivor B Asztalos MD , Amr El-Bokl MD , Platon Lukyanenko PhD , Ryan L Kobayashi MD , William G La Cava MD , Sunil J Ghelani MD , Prof Victoria L Vetter MD , Prof John K Triedman MD
{"title":"Electrocardiogram-based deep learning to predict left ventricular systolic dysfunction in paediatric and adult congenital heart disease in the USA: a multicentre modelling study","authors":"Joshua Mayourian MD , Ivor B Asztalos MD , Amr El-Bokl MD , Platon Lukyanenko PhD , Ryan L Kobayashi MD , William G La Cava MD , Sunil J Ghelani MD , Prof Victoria L Vetter MD , Prof John K Triedman MD","doi":"10.1016/j.landig.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Left ventricular systolic dysfunction (LVSD) is independently associated with cardiovascular events in patients with congenital heart disease. Although artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis is predictive of LVSD in the general adult population, it has yet to be applied comprehensively across congenital heart disease lesions.</div></div><div><h3>Methods</h3><div>We trained a convolutional neural network on paired ECG–echocardiograms (≤2 days apart) across the lifespan of a wide range of congenital heart disease lesions to detect left ventricular ejection fraction (LVEF) of 40% or less. Model performance was evaluated on single ECG–echocardiogram pairs per patient at Boston Children's Hospital (Boston, MA, USA) and externally at the Children's Hospital of Philadelphia (Philadelphia, PA, USA) using area under the receiver operating (AUROC) and precision-recall (AUPRC) curves.</div></div><div><h3>Findings</h3><div>The training cohort comprised 124 265 ECG–echocardiogram pairs (49 158 patients; median age 10·5 years [IQR 3·5–16·8]; 3381 [2·7%] of 124 265 ECG–echocardiogram pairs with LVEF ≤40%). Test groups included internal testing (21 068 patients; median age 10·9 years [IQR 3·7–17·0]; 3381 [2·7%] of 124 265 ECG–echocardiogram pairs with LVEF ≤40%) and external validation (42 984 patients; median age 10·8 years [IQR 4·9–15·0]; 1313 [1·7%] of 76 400 ECG–echocardiogram pairs with LVEF ≤40%) cohorts. High model performance was achieved during internal testing (AUROC 0·95, AUPRC 0·33) and external validation (AUROC 0·96, AUPRC 0·25) for a wide range of congenital heart disease lesions. Patients with LVEF greater than 40% by echocardiogram who were deemed high risk by AI-ECG were more likely to have future dysfunction compared with low-risk patients (hazard ratio 12·1 [95% CI 8·4–17·3]; p<0·0001). High-risk patients by AI-ECG were at increased risk of mortality in the overall cohort and lesion-specific subgroups. Common salient features highlighted across congenital heart disaese lesions include precordial QRS complexes and T waves, with common high-risk ECG features including deep V2 S waves and lateral precordial T wave inversion. A case study on patients with ventricular pacing showed similar findings.</div></div><div><h3>Interpretation</h3><div>Our externally validated algorithm shows promise in prediction of current and future LVSD in patients with congenital heart disease, providing a clinically impactful, inexpensive, and convenient cardiovascular health tool in this population.</div></div><div><h3>Funding</h3><div>Kostin Innovation Fund, Thrasher Research Fund Early Career Award, Boston Children's Hospital Electrophysiology Research Education Fund, National Institutes of Health, National Institute of Childhood Diseases and Human Development, and National Library of Medicine.</div></div>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":"7 4","pages":"Pages e264-e274"},"PeriodicalIF":23.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589750025000019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Left ventricular systolic dysfunction (LVSD) is independently associated with cardiovascular events in patients with congenital heart disease. Although artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis is predictive of LVSD in the general adult population, it has yet to be applied comprehensively across congenital heart disease lesions.
Methods
We trained a convolutional neural network on paired ECG–echocardiograms (≤2 days apart) across the lifespan of a wide range of congenital heart disease lesions to detect left ventricular ejection fraction (LVEF) of 40% or less. Model performance was evaluated on single ECG–echocardiogram pairs per patient at Boston Children's Hospital (Boston, MA, USA) and externally at the Children's Hospital of Philadelphia (Philadelphia, PA, USA) using area under the receiver operating (AUROC) and precision-recall (AUPRC) curves.
Findings
The training cohort comprised 124 265 ECG–echocardiogram pairs (49 158 patients; median age 10·5 years [IQR 3·5–16·8]; 3381 [2·7%] of 124 265 ECG–echocardiogram pairs with LVEF ≤40%). Test groups included internal testing (21 068 patients; median age 10·9 years [IQR 3·7–17·0]; 3381 [2·7%] of 124 265 ECG–echocardiogram pairs with LVEF ≤40%) and external validation (42 984 patients; median age 10·8 years [IQR 4·9–15·0]; 1313 [1·7%] of 76 400 ECG–echocardiogram pairs with LVEF ≤40%) cohorts. High model performance was achieved during internal testing (AUROC 0·95, AUPRC 0·33) and external validation (AUROC 0·96, AUPRC 0·25) for a wide range of congenital heart disease lesions. Patients with LVEF greater than 40% by echocardiogram who were deemed high risk by AI-ECG were more likely to have future dysfunction compared with low-risk patients (hazard ratio 12·1 [95% CI 8·4–17·3]; p<0·0001). High-risk patients by AI-ECG were at increased risk of mortality in the overall cohort and lesion-specific subgroups. Common salient features highlighted across congenital heart disaese lesions include precordial QRS complexes and T waves, with common high-risk ECG features including deep V2 S waves and lateral precordial T wave inversion. A case study on patients with ventricular pacing showed similar findings.
Interpretation
Our externally validated algorithm shows promise in prediction of current and future LVSD in patients with congenital heart disease, providing a clinically impactful, inexpensive, and convenient cardiovascular health tool in this population.
Funding
Kostin Innovation Fund, Thrasher Research Fund Early Career Award, Boston Children's Hospital Electrophysiology Research Education Fund, National Institutes of Health, National Institute of Childhood Diseases and Human Development, and National Library of Medicine.
期刊介绍:
The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health.
The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health.
We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.