{"title":"Efficient diagonalization of symmetric matrices associated with graphs of small treewidth","authors":"Martin Fürer , Carlos Hoppen , Vilmar Trevisan","doi":"10.1016/j.tcs.2025.115187","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>M</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></math></span> be a symmetric matrix of order <em>n</em> whose elements lie in an arbitrary field <span><math><mi>F</mi></math></span>, and let <em>G</em> be the graph with vertex set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> such that distinct vertices <em>i</em> and <em>j</em> are adjacent if and only if <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>≠</mo><mn>0</mn></math></span>. We introduce a dynamic programming algorithm that finds a diagonal matrix that is congruent to <em>M</em>. If <em>G</em> is given with a tree decomposition <span><math><mi>T</mi></math></span> of width <em>k</em>, then this can be done in time <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mo>|</mo><mi>T</mi><mo>|</mo><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></math></span>, where <span><math><mo>|</mo><mi>T</mi><mo>|</mo></math></span> denotes the number of nodes in <span><math><mi>T</mi></math></span>. Among other things, this allows the computation of the determinant, the rank and the inertia of a symmetric matrix in time <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mo>|</mo><mi>T</mi><mo>|</mo><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1040 ","pages":"Article 115187"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525001252","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a symmetric matrix of order n whose elements lie in an arbitrary field , and let G be the graph with vertex set such that distinct vertices i and j are adjacent if and only if . We introduce a dynamic programming algorithm that finds a diagonal matrix that is congruent to M. If G is given with a tree decomposition of width k, then this can be done in time , where denotes the number of nodes in . Among other things, this allows the computation of the determinant, the rank and the inertia of a symmetric matrix in time .
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.