{"title":"Climate impacts on deformation and instability of vegetated slopes","authors":"Qi Zhang , Haiyi Zhong , Haowen Guo , Junjun Ni","doi":"10.1016/j.bgtech.2024.100139","DOIUrl":null,"url":null,"abstract":"<div><div>Eco-geotechnical engineering plays a pivotal role in enhancing global sustainability and upholding the performance of earthen structures. The utilization of vegetation to stabilise geotechnical infrastructures is widely recognized and embraced for its environmentally friendly attributes. The spectre of climate change further intensifies the focus on the effects of temperature and humidity on vegetated soil. Consequently, there is a pressing need for research exploring the influence of changing climates on vegetated infrastructures. Such research demands a holistic and interdisciplinary approach, bridging fields such as soil mechanics, botany, and atmospheric science. This review underscores key facets crucial to vegetated geotechnical infrastructures, encompassing climate projections, centrifuge modelling, field monitoring, and numerical methodologies.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 2","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeotechnics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949929124000718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Eco-geotechnical engineering plays a pivotal role in enhancing global sustainability and upholding the performance of earthen structures. The utilization of vegetation to stabilise geotechnical infrastructures is widely recognized and embraced for its environmentally friendly attributes. The spectre of climate change further intensifies the focus on the effects of temperature and humidity on vegetated soil. Consequently, there is a pressing need for research exploring the influence of changing climates on vegetated infrastructures. Such research demands a holistic and interdisciplinary approach, bridging fields such as soil mechanics, botany, and atmospheric science. This review underscores key facets crucial to vegetated geotechnical infrastructures, encompassing climate projections, centrifuge modelling, field monitoring, and numerical methodologies.