Experimental investigation on response of biocemented coral sand pile composite foundation under seismic waves

Xiangwei Fang , Chao Chen , Ganggang Zhou , Zhixiong Chen , Chunyan Wang , Luqi Wang
{"title":"Experimental investigation on response of biocemented coral sand pile composite foundation under seismic waves","authors":"Xiangwei Fang ,&nbsp;Chao Chen ,&nbsp;Ganggang Zhou ,&nbsp;Zhixiong Chen ,&nbsp;Chunyan Wang ,&nbsp;Luqi Wang","doi":"10.1016/j.bgtech.2024.100136","DOIUrl":null,"url":null,"abstract":"<div><div>The biocemented coral sand pile composite foundation represents an innovative foundation improvement technology, utilizing Microbially Induced Carbonate Precipitation (MICP) to consolidate a specific volume of coral sand within the foundation into piles with defined strength, thereby enabling them to collaboratively bear external loads with the surrounding unconsolidated coral sand. In this study, a series of shaking table model tests were conducted to explore the dynamic response of the biocemented coral sand pile composite foundation under varying seismic wave types and peak accelerations. The surface macroscopic phenomena, excess pore water pressure ratio, acceleration response, and vertical settlement were measured and analysed in detail. Test results show that seismic wave types play a decisive role in the macroscopic surface phenomena and the response of the excess pore water pressure ratio. The cumulative settlement of the upper structure under the action of Taft waves was about 1.5 times that of El Centro waves and Kobe waves. The most pronounced liquefaction phenomena were recorded under the Taft wave, followed by the El Centro wave, and subsequently the Kobe wave. An observed positive correlation was established between the liquefaction phenomenon and the Aristotelian intensity of the seismic waves. However, variations in seismic wave types exerted minimal influence on the acceleration amplification factor of the coral sand foundation. Analysis of the acceleration amplification factor revealed a triphasic pattern—initially increasing, subsequently decreasing, and finally increasing again—as burial depth increased, in relation to the peak value of the input acceleration. This study confirms that the biocemented coral sand pile composite foundation can effectively enhance the liquefaction resistance of coral sand foundations.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 2","pages":"Article 100136"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeotechnics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949929124000688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The biocemented coral sand pile composite foundation represents an innovative foundation improvement technology, utilizing Microbially Induced Carbonate Precipitation (MICP) to consolidate a specific volume of coral sand within the foundation into piles with defined strength, thereby enabling them to collaboratively bear external loads with the surrounding unconsolidated coral sand. In this study, a series of shaking table model tests were conducted to explore the dynamic response of the biocemented coral sand pile composite foundation under varying seismic wave types and peak accelerations. The surface macroscopic phenomena, excess pore water pressure ratio, acceleration response, and vertical settlement were measured and analysed in detail. Test results show that seismic wave types play a decisive role in the macroscopic surface phenomena and the response of the excess pore water pressure ratio. The cumulative settlement of the upper structure under the action of Taft waves was about 1.5 times that of El Centro waves and Kobe waves. The most pronounced liquefaction phenomena were recorded under the Taft wave, followed by the El Centro wave, and subsequently the Kobe wave. An observed positive correlation was established between the liquefaction phenomenon and the Aristotelian intensity of the seismic waves. However, variations in seismic wave types exerted minimal influence on the acceleration amplification factor of the coral sand foundation. Analysis of the acceleration amplification factor revealed a triphasic pattern—initially increasing, subsequently decreasing, and finally increasing again—as burial depth increased, in relation to the peak value of the input acceleration. This study confirms that the biocemented coral sand pile composite foundation can effectively enhance the liquefaction resistance of coral sand foundations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信