TCDE-Net: An unsupervised dual-encoder network for 3D brain medical image registration

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Xin Yang , Dongxue Li , Liwei Deng , Sijuan Huang , Jing Wang
{"title":"TCDE-Net: An unsupervised dual-encoder network for 3D brain medical image registration","authors":"Xin Yang ,&nbsp;Dongxue Li ,&nbsp;Liwei Deng ,&nbsp;Sijuan Huang ,&nbsp;Jing Wang","doi":"10.1016/j.compmedimag.2025.102527","DOIUrl":null,"url":null,"abstract":"<div><div>Medical image registration is a critical task in aligning medical images from different time points, modalities, or individuals, essential for accurate diagnosis and treatment planning. Despite significant progress in deep learning-based registration methods, current approaches still face considerable challenges, such as insufficient capture of local details, difficulty in effectively modeling global contextual information, and limited robustness in handling complex deformations. These limitations hinder the precision of high-resolution registration, particularly when dealing with medical images with intricate structures. To address these issues, this paper presents a novel registration network (TCDE-Net), an unsupervised medical image registration method based on a dual-encoder architecture. The dual encoders complement each other in feature extraction, enabling the model to effectively handle large-scale nonlinear deformations and capture intricate local details, thereby enhancing registration accuracy. Additionally, the detail-enhancement attention module aids in restoring fine-grained features, improving the network's capability to address complex deformations such as those at gray-white matter boundaries. Experimental results on the OASIS, IXI, and Hammers-n30r95 3D brain MR dataset demonstrate that this method outperforms commonly used registration techniques across multiple evaluation metrics, achieving superior performance and robustness. Our code is available at <span><span>https://github.com/muzidongxue/TCDE-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102527"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000369","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image registration is a critical task in aligning medical images from different time points, modalities, or individuals, essential for accurate diagnosis and treatment planning. Despite significant progress in deep learning-based registration methods, current approaches still face considerable challenges, such as insufficient capture of local details, difficulty in effectively modeling global contextual information, and limited robustness in handling complex deformations. These limitations hinder the precision of high-resolution registration, particularly when dealing with medical images with intricate structures. To address these issues, this paper presents a novel registration network (TCDE-Net), an unsupervised medical image registration method based on a dual-encoder architecture. The dual encoders complement each other in feature extraction, enabling the model to effectively handle large-scale nonlinear deformations and capture intricate local details, thereby enhancing registration accuracy. Additionally, the detail-enhancement attention module aids in restoring fine-grained features, improving the network's capability to address complex deformations such as those at gray-white matter boundaries. Experimental results on the OASIS, IXI, and Hammers-n30r95 3D brain MR dataset demonstrate that this method outperforms commonly used registration techniques across multiple evaluation metrics, achieving superior performance and robustness. Our code is available at https://github.com/muzidongxue/TCDE-Net.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信