{"title":"A hybrid framework for estimating photovoltaic dust content based on UAV hyperspectral images","authors":"Peng Zhu, Hao Li, Pan Zheng","doi":"10.1016/j.jag.2025.104500","DOIUrl":null,"url":null,"abstract":"<div><div>Dust is one of the key factors influencing photovoltaic (PV) power generation. The ability to accurately capture PV dust information is essential for PV operation and sustainable utilization. This study employs uncrewed aerial vehicle (UAV) hyperspectral imaging to monitor PV dust deposition. To address the problems of information redundancy in hyperspectral data and the backpropagation neural network (BPNN) easily falling into local optimum, a high-precision UAV hyperspectral PV dust estimation method is proposed. The fractional order derivative (FOD) is applied to the spectral reflectance of PV dust accumulation, and a PV dust estimation model with sine map tuna swarm optimized backpropagation neural network (STSO-BPNN) is established, which is validated using UAV hyperspectral images and ground measured dust data. The results show that FOD improves the spectral signal-to-noise ratio, and the 0.2 order STSO-BPNN model achieves higher accuracy (R<sup>2</sup> = 0.95, RMSE = 0.79 g/m<sup>2</sup>, RPIQ = 7.98). These findings provide a scientific basis for the rapid and accurate estimation and mapping of PV dust accumulation while proposing a novel strategy for efficient PV implementation and management.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"139 ","pages":"Article 104500"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225001475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Dust is one of the key factors influencing photovoltaic (PV) power generation. The ability to accurately capture PV dust information is essential for PV operation and sustainable utilization. This study employs uncrewed aerial vehicle (UAV) hyperspectral imaging to monitor PV dust deposition. To address the problems of information redundancy in hyperspectral data and the backpropagation neural network (BPNN) easily falling into local optimum, a high-precision UAV hyperspectral PV dust estimation method is proposed. The fractional order derivative (FOD) is applied to the spectral reflectance of PV dust accumulation, and a PV dust estimation model with sine map tuna swarm optimized backpropagation neural network (STSO-BPNN) is established, which is validated using UAV hyperspectral images and ground measured dust data. The results show that FOD improves the spectral signal-to-noise ratio, and the 0.2 order STSO-BPNN model achieves higher accuracy (R2 = 0.95, RMSE = 0.79 g/m2, RPIQ = 7.98). These findings provide a scientific basis for the rapid and accurate estimation and mapping of PV dust accumulation while proposing a novel strategy for efficient PV implementation and management.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.