Prediction of the bed expansion and pressure drop in microirrigation media filter backwashing using artificial neural networks and comparison with other machine learning techniques

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Paulino José García-Nieto , Esperanza García-Gonzalo , Jonathan Graciano-Uribe , Gerard Arbat , Miquel Duran-Ros , Toni Pujol , Jaume Puig-Bargués
{"title":"Prediction of the bed expansion and pressure drop in microirrigation media filter backwashing using artificial neural networks and comparison with other machine learning techniques","authors":"Paulino José García-Nieto ,&nbsp;Esperanza García-Gonzalo ,&nbsp;Jonathan Graciano-Uribe ,&nbsp;Gerard Arbat ,&nbsp;Miquel Duran-Ros ,&nbsp;Toni Pujol ,&nbsp;Jaume Puig-Bargués","doi":"10.1016/j.atech.2025.100900","DOIUrl":null,"url":null,"abstract":"<div><div>The filtration capacity of media filters, which are widely used in drip irrigation systems to prevent emitter clogging, must be periodically restored by backwashing, which fluidizes the media bed and removes those trapped particles. Bed expansion (BE) and pressure drop (PD) are the key parameters for assessing the hydraulic performance of backwashing, but the available equations and models frequently fall short of their prediction. An experiment with three medium types, four filter underdrain designs, two bed heights and different backwashing superficial velocities as input variables was conducted to measure both BE and PD. A dataset of 705 backwashing runs was obtained and with 80 % of data for training and 20 % for testing, a machine learning-based model that uses Artificial Neural Networks (ANN) to predict both BE and PD was developed and compared with the Ridge, Elastic-net, and Lasso regression models. With coefficients of determination of 0.9932 and 0.9988 for BE and PD, respectively, the results demonstrated that the ANN model not only ranked the importance of the input variables and showed strong agreement with experimental data but also attained superior predictive accuracy regarding the Lasso, Elastic-net, and Ridge models. This study presents a novel and optimized approach for predicting bed expansion and pressure drop, enhancing the reliability of media filter backwashing performance assessments in smart irrigation systems.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"11 ","pages":"Article 100900"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525001339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The filtration capacity of media filters, which are widely used in drip irrigation systems to prevent emitter clogging, must be periodically restored by backwashing, which fluidizes the media bed and removes those trapped particles. Bed expansion (BE) and pressure drop (PD) are the key parameters for assessing the hydraulic performance of backwashing, but the available equations and models frequently fall short of their prediction. An experiment with three medium types, four filter underdrain designs, two bed heights and different backwashing superficial velocities as input variables was conducted to measure both BE and PD. A dataset of 705 backwashing runs was obtained and with 80 % of data for training and 20 % for testing, a machine learning-based model that uses Artificial Neural Networks (ANN) to predict both BE and PD was developed and compared with the Ridge, Elastic-net, and Lasso regression models. With coefficients of determination of 0.9932 and 0.9988 for BE and PD, respectively, the results demonstrated that the ANN model not only ranked the importance of the input variables and showed strong agreement with experimental data but also attained superior predictive accuracy regarding the Lasso, Elastic-net, and Ridge models. This study presents a novel and optimized approach for predicting bed expansion and pressure drop, enhancing the reliability of media filter backwashing performance assessments in smart irrigation systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信