Broad information diffusion modelling for sharing link click prediction using knowledge graphs

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiangjie Kong , Can Shu , Lingyun Wang , Hanlin Zhou , Linan Zhu , Jianxin Li
{"title":"Broad information diffusion modelling for sharing link click prediction using knowledge graphs","authors":"Xiangjie Kong ,&nbsp;Can Shu ,&nbsp;Lingyun Wang ,&nbsp;Hanlin Zhou ,&nbsp;Linan Zhu ,&nbsp;Jianxin Li","doi":"10.1016/j.eswa.2025.127276","DOIUrl":null,"url":null,"abstract":"<div><div>In the new media era, users actively share and diffuse information across social networks, creating complex patterns of broad information diffusion (BID) that differ significantly from traditional recommendation scenarios. Existing models are primarily designed for deep information diffusion (DID) with sequential cascades and struggle to address BID challenges, including the sparse graph structure, weak temporal correlation, and ambiguity in user preferences. To bridge this gap, we propose K-BID, a knowledge-driven framework tailored for BID scenarios. K-BID integrates semantic and social graph information through a two-phase ‘Match &amp; Rank’ approach. The matching phase retrieves candidate voters using social relationships and personalized preferences, whereas the ranking phase refines predictions by modelling temporal dynamics. Experiments on real-world datasets demonstrate the superiority of K-BID over state-of-the-art methods, achieving significant improvements of 14.02%, 16.80%, and 16.99% in Precision, MRR, and AUC respectively, for the ‘Soc.’ objective with <span><math><mrow><mi>K</mi><mo>=</mo><mn>5</mn></mrow></math></span>. Our work advances the understanding of BID scenarios and offers a practical solution for optimizing information dissemination in social platforms.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"277 ","pages":"Article 127276"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741742500898X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the new media era, users actively share and diffuse information across social networks, creating complex patterns of broad information diffusion (BID) that differ significantly from traditional recommendation scenarios. Existing models are primarily designed for deep information diffusion (DID) with sequential cascades and struggle to address BID challenges, including the sparse graph structure, weak temporal correlation, and ambiguity in user preferences. To bridge this gap, we propose K-BID, a knowledge-driven framework tailored for BID scenarios. K-BID integrates semantic and social graph information through a two-phase ‘Match & Rank’ approach. The matching phase retrieves candidate voters using social relationships and personalized preferences, whereas the ranking phase refines predictions by modelling temporal dynamics. Experiments on real-world datasets demonstrate the superiority of K-BID over state-of-the-art methods, achieving significant improvements of 14.02%, 16.80%, and 16.99% in Precision, MRR, and AUC respectively, for the ‘Soc.’ objective with K=5. Our work advances the understanding of BID scenarios and offers a practical solution for optimizing information dissemination in social platforms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信