Jinlong Zheng , Yixin Zhao , Yinya Li , Jianfeng Li , Liangeng Wang , Di Yuan
{"title":"Dynamic flexible flow shop scheduling via cross-attention networks and multi-agent reinforcement learning","authors":"Jinlong Zheng , Yixin Zhao , Yinya Li , Jianfeng Li , Liangeng Wang , Di Yuan","doi":"10.1016/j.jmsy.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing uncertainty in production environments and changes in market demand, flexible and efficient scheduling solutions have become particularly critical. However, existing research mainly focuses on static scheduling or relatively simple dynamic scheduling problems, which are inadequate to address the complexities of actual production processes. This paper considers the dynamic flexible flow shop scheduling problem (DFFSP) characterized by diverse processes, complexity, and high flexibility, and proposes a multi-agent reinforcement learning algorithm based on cross-attention networks (MARL_CA). First, this paper proposes a novel state feature representation method, which represents the job processing data and the production Gantt chart as a state matrix, fully reflecting the environment state in the scheduling process. In addition, a cross-attention network is proposed to extract state features, enabling efficient discovery of complex relationships between jobs and machines, thereby enhancing the model's ability to understand intricate features. The model is trained using an independent proximal policy optimization (IPPO) based on the actor-critic method to help agents learn accurate and efficient scheduling strategies. Experimental results on a large number of static and dynamic scheduling instances demonstrate that the proposed algorithm outperforms traditional heuristic rules and other advanced algorithms, exhibiting strong learning efficiency and generalization capability.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 395-411"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000652","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing uncertainty in production environments and changes in market demand, flexible and efficient scheduling solutions have become particularly critical. However, existing research mainly focuses on static scheduling or relatively simple dynamic scheduling problems, which are inadequate to address the complexities of actual production processes. This paper considers the dynamic flexible flow shop scheduling problem (DFFSP) characterized by diverse processes, complexity, and high flexibility, and proposes a multi-agent reinforcement learning algorithm based on cross-attention networks (MARL_CA). First, this paper proposes a novel state feature representation method, which represents the job processing data and the production Gantt chart as a state matrix, fully reflecting the environment state in the scheduling process. In addition, a cross-attention network is proposed to extract state features, enabling efficient discovery of complex relationships between jobs and machines, thereby enhancing the model's ability to understand intricate features. The model is trained using an independent proximal policy optimization (IPPO) based on the actor-critic method to help agents learn accurate and efficient scheduling strategies. Experimental results on a large number of static and dynamic scheduling instances demonstrate that the proposed algorithm outperforms traditional heuristic rules and other advanced algorithms, exhibiting strong learning efficiency and generalization capability.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.