Self-adaptive production performance monitoring framework under different operating regimes

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Joao Paulo Jacomini Prioli , Nur Banu Altinpulluk , Jeremy L. Rickli , Murat Yildirim
{"title":"Self-adaptive production performance monitoring framework under different operating regimes","authors":"Joao Paulo Jacomini Prioli ,&nbsp;Nur Banu Altinpulluk ,&nbsp;Jeremy L. Rickli ,&nbsp;Murat Yildirim","doi":"10.1016/j.jmsy.2025.02.011","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic operational regimes in modern manufacturing systems generate a myriad of challenges for production performance monitoring applications. Heterogeneous data streams and fast production changeovers often complicate sensor information, leading to misinterpretation of systemic performance issues. Conventional methods address this problem by explicitly modeling these operational regimes. However, it requires significant engineering hours and expertise, constituting a substantial adoption barrier for small-to-medium enterprises (SMEs). This paper proposes a self-adaptive smart monitoring framework that autonomously discovers and accounts for operational regime changes to offer accurate predictions on systemic performance despite the complexities in continuous multi-sourced data acquisition and dynamic regime behavior of machines. Computational experiments tested the methodology using a predictive system in two manufacturing cells under dynamic operational regimes. The proposed framework outperforms benchmark policies commonly used in prediction models by improving prediction accuracy from 3% to 62%, along with a better convergence rate. The results demonstrated that the proposed framework can positively impact smart maintenance implementation for SMEs with limited resources.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 380-394"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027861252500041X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic operational regimes in modern manufacturing systems generate a myriad of challenges for production performance monitoring applications. Heterogeneous data streams and fast production changeovers often complicate sensor information, leading to misinterpretation of systemic performance issues. Conventional methods address this problem by explicitly modeling these operational regimes. However, it requires significant engineering hours and expertise, constituting a substantial adoption barrier for small-to-medium enterprises (SMEs). This paper proposes a self-adaptive smart monitoring framework that autonomously discovers and accounts for operational regime changes to offer accurate predictions on systemic performance despite the complexities in continuous multi-sourced data acquisition and dynamic regime behavior of machines. Computational experiments tested the methodology using a predictive system in two manufacturing cells under dynamic operational regimes. The proposed framework outperforms benchmark policies commonly used in prediction models by improving prediction accuracy from 3% to 62%, along with a better convergence rate. The results demonstrated that the proposed framework can positively impact smart maintenance implementation for SMEs with limited resources.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信