Elastic-degenerate string comparison

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Estéban Gabory , Moses Njagi Mwaniki , Nadia Pisanti , Solon P. Pissis , Jakub Radoszewski , Michelle Sweering , Wiktor Zuba
{"title":"Elastic-degenerate string comparison","authors":"Estéban Gabory ,&nbsp;Moses Njagi Mwaniki ,&nbsp;Nadia Pisanti ,&nbsp;Solon P. Pissis ,&nbsp;Jakub Radoszewski ,&nbsp;Michelle Sweering ,&nbsp;Wiktor Zuba","doi":"10.1016/j.ic.2025.105296","DOIUrl":null,"url":null,"abstract":"<div><div>An elastic-degenerate (ED) string <em>T</em> is a sequence of <em>n</em> sets <span><math><mi>T</mi><mo>[</mo><mn>1</mn><mo>]</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>T</mi><mo>[</mo><mi>n</mi><mo>]</mo></math></span> containing <em>m</em> strings in total whose cumulative length is <em>N</em>. We call <em>n</em>, <em>m</em>, and <em>N</em> the length, the cardinality and the size of <em>T</em>, respectively. The language of <em>T</em> is defined as <span><math><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace></mspace><mo>:</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>T</mi><mo>[</mo><mi>i</mi><mo>]</mo><mtext> for all </mtext><mi>i</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo><mo>}</mo></math></span>. Given two ED strings, how fast can we check whether the two languages they represent have a nonempty intersection? We call this problem the <span>ED String Intersection</span> (EDSI) problem. For two ED strings <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of lengths <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, cardinalities <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and sizes <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, respectively, we show the following:<ul><li><span>•</span><span><div>There is no <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>1</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span>-time algorithm, for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, for EDSI even if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are over a binary alphabet, unless the Strong Exponential-Time Hypothesis is false.</div></span></li><li><span>•</span><span><div>There is no combinatorial <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>1.2</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mi>f</mi><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>-time algorithm, for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span> and any function <em>f</em>, for EDSI even if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are over a binary alphabet, unless the Boolean Matrix Multiplication conjecture is false.</div></span></li><li><span>•</span><span><div>An <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-time algorithm for outputting a compact representation of the intersection language of two unary ED strings. When <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are given in a compact representation, we show that the problem is NP-complete.</div></span></li><li><span>•</span><span><div>An <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-time algorithm for EDSI.</div></span></li><li><span>•</span><span><div>An <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-time algorithm for EDSI, where <em>ω</em> is the matrix multiplication exponent; the <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> notation suppresses factors that are polylogarithmic in the input size.</div></span></li></ul></div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"304 ","pages":"Article 105296"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012500032X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

An elastic-degenerate (ED) string T is a sequence of n sets T[1],,T[n] containing m strings in total whose cumulative length is N. We call n, m, and N the length, the cardinality and the size of T, respectively. The language of T is defined as L(T)={S1Sn:SiT[i] for all i[1,n]}. Given two ED strings, how fast can we check whether the two languages they represent have a nonempty intersection? We call this problem the ED String Intersection (EDSI) problem. For two ED strings T1 and T2 of lengths n1 and n2, cardinalities m1 and m2, and sizes N1 and N2, respectively, we show the following:
  • There is no O((N1N2)1ϵ)-time algorithm, for any ϵ>0, for EDSI even if T1 and T2 are over a binary alphabet, unless the Strong Exponential-Time Hypothesis is false.
  • There is no combinatorial O((N1+N2)1.2ϵf(n1,n2))-time algorithm, for any ϵ>0 and any function f, for EDSI even if T1 and T2 are over a binary alphabet, unless the Boolean Matrix Multiplication conjecture is false.
  • An O(N1logN1logn1+N2logN2logn2)-time algorithm for outputting a compact representation of the intersection language of two unary ED strings. When T1 and T2 are given in a compact representation, we show that the problem is NP-complete.
  • An O(N1m2+N2m1)-time algorithm for EDSI.
  • An O˜(N1ω1n2+N2ω1n1)-time algorithm for EDSI, where ω is the matrix multiplication exponent; the O˜ notation suppresses factors that are polylogarithmic in the input size.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信