Intuitive axial augmentation using polar-sine-based piecewise distortion for medical slice-wise segmentation

Q2 Health Professions
Yiqin Zhang , Qingkui Chen , Chen Huang , Zhengjie Zhang , Meiling Chen , Zhibing Fu
{"title":"Intuitive axial augmentation using polar-sine-based piecewise distortion for medical slice-wise segmentation","authors":"Yiqin Zhang ,&nbsp;Qingkui Chen ,&nbsp;Chen Huang ,&nbsp;Zhengjie Zhang ,&nbsp;Meiling Chen ,&nbsp;Zhibing Fu","doi":"10.1016/j.smhl.2025.100556","DOIUrl":null,"url":null,"abstract":"<div><div>Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: <span><span>https://github.com/MGAMZ/PSBPD</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100556"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: https://github.com/MGAMZ/PSBPD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信