Large language models for robotics: Opportunities, challenges, and perspectives

Jiaqi Wang , Enze Shi , Huawen Hu , Chong Ma , Yiheng Liu , Xuhui Wang , Yincheng Yao , Xuan Liu , Bao Ge , Shu Zhang
{"title":"Large language models for robotics: Opportunities, challenges, and perspectives","authors":"Jiaqi Wang ,&nbsp;Enze Shi ,&nbsp;Huawen Hu ,&nbsp;Chong Ma ,&nbsp;Yiheng Liu ,&nbsp;Xuhui Wang ,&nbsp;Yincheng Yao ,&nbsp;Xuan Liu ,&nbsp;Bao Ge ,&nbsp;Shu Zhang","doi":"10.1016/j.jai.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains. Notably, in the realm of robot task planning, LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions. However, for embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception. This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks. Additionally, we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions. Our results, based on diverse datasets, indicate that GPT-4V effectively enhances robot performance in embodied tasks. This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.</div></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"4 1","pages":"Pages 52-64"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855424000613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains. Notably, in the realm of robot task planning, LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions. However, for embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception. This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks. Additionally, we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions. Our results, based on diverse datasets, indicate that GPT-4V effectively enhances robot performance in embodied tasks. This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.
机器人的大型语言模型:机遇、挑战和前景
大型语言模型(llm)经历了显著的扩展,并且越来越多地跨各个领域集成。值得注意的是,在机器人任务规划领域,llm利用其先进的推理和语言理解能力,根据自然语言指令制定精确有效的行动计划。然而,对于机器人与复杂环境交互的具身任务,由于缺乏与机器人视觉感知的兼容性,纯文本llm经常面临挑战。这项研究提供了法学硕士和多模态法学硕士到各种机器人任务的新兴集成的全面概述。此外,我们提出了一个利用多模态GPT-4V的框架,通过自然语言指令和机器人视觉感知的结合来增强具身任务规划。基于不同数据集的研究结果表明,GPT-4V有效地提高了机器人在具身任务中的表现。对各种机器人任务的法学硕士和多模态法学硕士的广泛调查和评估丰富了对以法学硕士为中心的具身智能的理解,并为弥合人-机器人-环境交互的差距提供了前瞻性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信