Mechanical performance of bio-based materials in structural applications: A comprehensive review

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Salim Barbhuiya , Bibhuti Bhusan Das , Kanish Kapoor , Avik Das , Vasudha Katare
{"title":"Mechanical performance of bio-based materials in structural applications: A comprehensive review","authors":"Salim Barbhuiya ,&nbsp;Bibhuti Bhusan Das ,&nbsp;Kanish Kapoor ,&nbsp;Avik Das ,&nbsp;Vasudha Katare","doi":"10.1016/j.istruc.2025.108726","DOIUrl":null,"url":null,"abstract":"<div><div>The pursuit of sustainable materials in construction has led to increased interest in bio-based materials for structural applications. This review paper examines the mechanical performance of structural members made from bio-based materials, including natural fibres, bio-based polymers, and engineered wood products. Key mechanical properties such as tensile, compressive, and flexural strength, as well as durability under environmental stressors, are analyzed to understand their suitability for load-bearing applications. The paper also discusses factors affecting mechanical behaviour, including moisture absorption, temperature sensitivity, and fabrication techniques. A comparative analysis highlights the performance of bio-based materials against conventional materials like steel and concrete, emphasizing both their strengths and limitations. Enhancements in bio-based composites, including hybridization and nanotechnology, are reviewed for their potential to improve mechanical robustness. Additionally, sustainability aspects, such as life cycle assessment and end-of-life biodegradability, are evaluated to underscore the environmental benefits of bio-based structural members. The paper concludes with future research directions, advocating for innovation in bio-based material technology to meet structural demands and support the construction industry’s shift toward greener practices. This review aims to provide a foundational understanding for engineers and researchers seeking to integrate bio-based materials into sustainable structural designs.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"75 ","pages":"Article 108726"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012425005405","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of sustainable materials in construction has led to increased interest in bio-based materials for structural applications. This review paper examines the mechanical performance of structural members made from bio-based materials, including natural fibres, bio-based polymers, and engineered wood products. Key mechanical properties such as tensile, compressive, and flexural strength, as well as durability under environmental stressors, are analyzed to understand their suitability for load-bearing applications. The paper also discusses factors affecting mechanical behaviour, including moisture absorption, temperature sensitivity, and fabrication techniques. A comparative analysis highlights the performance of bio-based materials against conventional materials like steel and concrete, emphasizing both their strengths and limitations. Enhancements in bio-based composites, including hybridization and nanotechnology, are reviewed for their potential to improve mechanical robustness. Additionally, sustainability aspects, such as life cycle assessment and end-of-life biodegradability, are evaluated to underscore the environmental benefits of bio-based structural members. The paper concludes with future research directions, advocating for innovation in bio-based material technology to meet structural demands and support the construction industry’s shift toward greener practices. This review aims to provide a foundational understanding for engineers and researchers seeking to integrate bio-based materials into sustainable structural designs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信