Shanyang Ding, Dongjiang Niu, Mingxuan Li, Zhixin Zhang, Zhen Li
{"title":"Drug–drug interaction prediction based on graph contrastive learning and dual-view fusion","authors":"Shanyang Ding, Dongjiang Niu, Mingxuan Li, Zhixin Zhang, Zhen Li","doi":"10.1016/j.compbiolchem.2025.108426","DOIUrl":null,"url":null,"abstract":"<div><div>Drug–drug interaction (DDI) is important in drug research and are one of the major causes of morbidity and mortality. The deep learning methods can automatically extract drug features from molecular graphs or drug-related networks, which improves the performance of DDI prediction. However, there is noise and incomplete data in existing datasets, and the volume of dataset is limited. In order to fully utilize the knowledge graph network and the molecular structure, we propose a dual-view fusion model GDF-DDI. In one view, the knowledge graph network and drug similarity network are constructed as the global information, and two graph convolution operations are implemented on both networks to extract drug embeddings. Subsequently, layer wise graph contrastive learning is performed to update the drug embeddings to captures richer semantic information. In the other view, the self-supervised learning is utilized to extract more comprehensive embedding of drugs. The embeddings under two views are concatenated to cover the global and local DDI information. The comparative experiments on two datasets show that our model outperforms other recent and state-of-the-art baselines.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"117 ","pages":"Article 108426"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000866","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug–drug interaction (DDI) is important in drug research and are one of the major causes of morbidity and mortality. The deep learning methods can automatically extract drug features from molecular graphs or drug-related networks, which improves the performance of DDI prediction. However, there is noise and incomplete data in existing datasets, and the volume of dataset is limited. In order to fully utilize the knowledge graph network and the molecular structure, we propose a dual-view fusion model GDF-DDI. In one view, the knowledge graph network and drug similarity network are constructed as the global information, and two graph convolution operations are implemented on both networks to extract drug embeddings. Subsequently, layer wise graph contrastive learning is performed to update the drug embeddings to captures richer semantic information. In the other view, the self-supervised learning is utilized to extract more comprehensive embedding of drugs. The embeddings under two views are concatenated to cover the global and local DDI information. The comparative experiments on two datasets show that our model outperforms other recent and state-of-the-art baselines.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.