A fully-decoupled second-order-in-time and unconditionally energy stable scheme for the Cahn-Hilliard-Navier-Stokes equations with variable density

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jinpeng Zhang , Li Luo , Xiaoping Wang
{"title":"A fully-decoupled second-order-in-time and unconditionally energy stable scheme for the Cahn-Hilliard-Navier-Stokes equations with variable density","authors":"Jinpeng Zhang ,&nbsp;Li Luo ,&nbsp;Xiaoping Wang","doi":"10.1016/j.jcp.2025.113943","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a second-order, fully decoupled, and energy-stable numerical scheme for the Cahn-Hilliard-Navier-Stokes model for two phase flow with variable density and viscosity. We propose a new decoupling Constant Scalar Auxiliary Variable (D-CSAV) method which is easy to generalize to schemes with high order accuracy in time. The method is designed using the “zero-energy-contribution” property while maintaining conservative time discretization for the “non-zero-energy-contribution” terms. A new set of scalar auxiliary variables is introduced to develop second-order-in-time, unconditionally energy stable, and decoupling-type numerical schemes. We also introduce a stabilization parameter <em>α</em> to improve the stability of the scheme by slowing down the dynamics of the scalar auxiliary variables. Our algorithm simplifies to solving three independent linear elliptic systems per time step, two of them with constant coefficients. The update of all scalar auxiliary variables is explicit and decoupled from solving the phase field variable and velocity field. We rigorously prove unconditional energy stability of the scheme and perform extensive benchmark simulations to demonstrate accuracy and efficiency of the method.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"532 ","pages":"Article 113943"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002268","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a second-order, fully decoupled, and energy-stable numerical scheme for the Cahn-Hilliard-Navier-Stokes model for two phase flow with variable density and viscosity. We propose a new decoupling Constant Scalar Auxiliary Variable (D-CSAV) method which is easy to generalize to schemes with high order accuracy in time. The method is designed using the “zero-energy-contribution” property while maintaining conservative time discretization for the “non-zero-energy-contribution” terms. A new set of scalar auxiliary variables is introduced to develop second-order-in-time, unconditionally energy stable, and decoupling-type numerical schemes. We also introduce a stabilization parameter α to improve the stability of the scheme by slowing down the dynamics of the scalar auxiliary variables. Our algorithm simplifies to solving three independent linear elliptic systems per time step, two of them with constant coefficients. The update of all scalar auxiliary variables is explicit and decoupled from solving the phase field variable and velocity field. We rigorously prove unconditional energy stability of the scheme and perform extensive benchmark simulations to demonstrate accuracy and efficiency of the method.
针对密度可变的卡恩-希利亚德-纳维尔-斯托克斯方程的完全解耦的二阶时间和无条件能量稳定方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信