{"title":"Quantile prediction with factor-augmented regression: Structural instability and model uncertainty","authors":"Yundong Tu , Siwei Wang","doi":"10.1016/j.jeconom.2025.105999","DOIUrl":null,"url":null,"abstract":"<div><div>The quantile regression is an effective tool in modeling data with heterogeneous conditional distribution. This paper considers the time-varying coefficient quantile predictive regression with factor-augmented predictors, to capture smooth structural changes and incorporate high-dimensional data information in prediction simultaneously. Uniform consistency of the local linear quantile coefficient estimators is established under misspecification. To further improve the forecast accuracy, a novel time-varying model averaging based on local forward-validation is developed. The averaging estimator is shown to be asymptotically optimal in the sense of minimizing out-of-sample forecast risk function. Furthermore, the weight selection consistency and the asymptotic distribution of the averaging coefficient estimator are established. Numerical results from simulations and a real data application to forecasting U.S. inflation demonstrate the nice performance of the averaging estimators.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105999"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000533","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The quantile regression is an effective tool in modeling data with heterogeneous conditional distribution. This paper considers the time-varying coefficient quantile predictive regression with factor-augmented predictors, to capture smooth structural changes and incorporate high-dimensional data information in prediction simultaneously. Uniform consistency of the local linear quantile coefficient estimators is established under misspecification. To further improve the forecast accuracy, a novel time-varying model averaging based on local forward-validation is developed. The averaging estimator is shown to be asymptotically optimal in the sense of minimizing out-of-sample forecast risk function. Furthermore, the weight selection consistency and the asymptotic distribution of the averaging coefficient estimator are established. Numerical results from simulations and a real data application to forecasting U.S. inflation demonstrate the nice performance of the averaging estimators.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.