Controllability of multi-term fractional-order impulsive dynamical systems with $$\varphi $$ -Caputo fractional derivative

IF 2.5 2区 数学 Q1 MATHEMATICS
Md. Samshad Hussain Ansari, Muslim Malik
{"title":"Controllability of multi-term fractional-order impulsive dynamical systems with $$\\varphi $$ -Caputo fractional derivative","authors":"Md. Samshad Hussain Ansari, Muslim Malik","doi":"10.1007/s13540-025-00393-6","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider a multi-term <span>\\(\\varphi \\)</span>-Caputo fractional dynamical system with non-instantaneous impulses. Firstly, we derive the solution for the linear <span>\\(\\varphi \\)</span>-Caputo fractional differential equation by using the generalized Laplace transform. Then, some necessary and sufficient conditions have been examined for the controllability of the linear multi-term <span>\\(\\varphi \\)</span>-Caputo fractional dynamical system with non-instantaneous impulses. Further, we establish some sufficient conditions for the controllability of the nonlinear system by utilizing the Schauder’s fixed point theorem and Gramian matrix. Finally, a simulated example is used to validate the obtained results of this article.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"183 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00393-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider a multi-term \(\varphi \)-Caputo fractional dynamical system with non-instantaneous impulses. Firstly, we derive the solution for the linear \(\varphi \)-Caputo fractional differential equation by using the generalized Laplace transform. Then, some necessary and sufficient conditions have been examined for the controllability of the linear multi-term \(\varphi \)-Caputo fractional dynamical system with non-instantaneous impulses. Further, we establish some sufficient conditions for the controllability of the nonlinear system by utilizing the Schauder’s fixed point theorem and Gramian matrix. Finally, a simulated example is used to validate the obtained results of this article.

在本文中,我们考虑了一个具有非瞬时脉冲的多期(\varphi \)-卡普托分数动力系统。首先,我们利用广义拉普拉斯变换推导出线性 \(\varphi\)-Caputo 分数微分方程的解。然后,研究了具有非瞬时脉冲的线性多项式(\varphi \)-卡普托分数动力系统可控性的一些必要条件和充分条件。此外,我们还利用 Schauder 定点定理和 Gramian 矩阵为非线性系统的可控性建立了一些充分条件。最后,我们用一个模拟实例来验证本文所获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信