Simulating neuronal dynamics in fractional adaptive exponential integrate-and-fire models

IF 2.5 2区 数学 Q1 MATHEMATICS
Alexandru Fikl, Aman Jhinga, Eva Kaslik, Argha Mondal
{"title":"Simulating neuronal dynamics in fractional adaptive exponential integrate-and-fire models","authors":"Alexandru Fikl, Aman Jhinga, Eva Kaslik, Argha Mondal","doi":"10.1007/s13540-025-00392-7","DOIUrl":null,"url":null,"abstract":"<p>We introduce an efficient discretisation of a novel fractional-order adaptive exponential (FrAdEx) integrate-and-fire model, which is used to study the fractional-order dynamics of neuronal activities. The discretisation is based on an extension of L1-type methods that can accurately handle exponential growth and the spiking mechanism of the model. This new method is implicit and uses adaptive time stepping to robustly handle the stiff system that arises due to the exponential term. The implicit nonlinear system can be solved exactly, without iterative methods, making the scheme efficient while maintaining accuracy. We present a complete error model for the numerical scheme that can be extended to other integrate-and-fire models with minor changes. To show the feasibility of our approach, the numerical method has been rigorously validated and used to investigate the diverse spiking oscillations of the model. We observed that the fractional-order model is capable of predicting biophysical activities, which are interpreted through phase diagrams describing the transition from one firing type to another. This simple model shows significant promise, as it has sufficient expressive dynamics to reproduce several features qualitatively from a biophysical dynamical perspective.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00392-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an efficient discretisation of a novel fractional-order adaptive exponential (FrAdEx) integrate-and-fire model, which is used to study the fractional-order dynamics of neuronal activities. The discretisation is based on an extension of L1-type methods that can accurately handle exponential growth and the spiking mechanism of the model. This new method is implicit and uses adaptive time stepping to robustly handle the stiff system that arises due to the exponential term. The implicit nonlinear system can be solved exactly, without iterative methods, making the scheme efficient while maintaining accuracy. We present a complete error model for the numerical scheme that can be extended to other integrate-and-fire models with minor changes. To show the feasibility of our approach, the numerical method has been rigorously validated and used to investigate the diverse spiking oscillations of the model. We observed that the fractional-order model is capable of predicting biophysical activities, which are interpreted through phase diagrams describing the transition from one firing type to another. This simple model shows significant promise, as it has sufficient expressive dynamics to reproduce several features qualitatively from a biophysical dynamical perspective.

在分数阶自适应指数积分-火模型中模拟神经元动力学
我们引入了一种新的分数阶自适应指数(FrAdEx)积分-激发模型的有效离散化方法,该模型用于研究神经元活动的分数阶动力学。离散化是基于l1型方法的扩展,可以准确地处理指数增长和模型的峰值机制。该方法是隐式的,采用自适应时间步进来鲁棒处理由指数项引起的刚性系统。该隐式非线性系统无需迭代法即可精确求解,在保证精度的同时提高了算法的效率。我们提出了一个完整的数值格式误差模型,该模型可以推广到其他的集成和射击模型,并且变化很小。为了证明我们的方法的可行性,数值方法已被严格验证,并用于研究模型的各种尖峰振荡。我们观察到分数阶模型能够通过描述从一种发射类型到另一种发射类型转变的相图来解释生物物理活动。这个简单的模型显示了重要的前景,因为它具有足够的表达动态,可以从生物物理动力学的角度定性地再现几个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信