Generative 3D reconstruction of Ti-6Al-4V basketweave microstructures by optimization of differentiable microstructural descriptors

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Vincent Blümer , Ali Reza Safi , Celal Soyarslan , Benjamin Klusemann , Ton van den Boogaard
{"title":"Generative 3D reconstruction of Ti-6Al-4V basketweave microstructures by optimization of differentiable microstructural descriptors","authors":"Vincent Blümer ,&nbsp;Ali Reza Safi ,&nbsp;Celal Soyarslan ,&nbsp;Benjamin Klusemann ,&nbsp;Ton van den Boogaard","doi":"10.1016/j.actamat.2025.120947","DOIUrl":null,"url":null,"abstract":"<div><div>We present a methodology for the generative reconstruction of 3D microstructures from 2D cross-sectional electron backscatter diffraction micrographs. The method is applied to Ti-6Al-4V processed by laser powder bed fusion, where a high amount of basketweave morphology is observed, which arises from the solid-state <span><math><mrow><mi>β</mi><mo>→</mo><mi>α</mi></mrow></math></span>-transition upon cooling. Prior-<span><math><mi>β</mi></math></span>-grain reconstruction is performed and the out-of-plane orientation of the observed grains is obtained leveraging Burgers orientation relationship. Microstructural descriptors related to convolutional neural networks are extracted from the 2D micrographs, and used for cross-section-based optimization of pixel values in a 3D volume. In order to reconstruct crystallographic orientations, the orientation distribution of the basketweave microstructure is reduced to a discrete set of characteristic orientations, which are sequentially reconstructed as separate components. Our reconstructions capture the characteristic lath morphology that is typically observed in powder bed fusion-processed Ti-6Al-4V and perform well in comparisons of chord length, as well as grain size, aspect ratio, and axis orientation distributions.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"291 ","pages":"Article 120947"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002393","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a methodology for the generative reconstruction of 3D microstructures from 2D cross-sectional electron backscatter diffraction micrographs. The method is applied to Ti-6Al-4V processed by laser powder bed fusion, where a high amount of basketweave morphology is observed, which arises from the solid-state βα-transition upon cooling. Prior-β-grain reconstruction is performed and the out-of-plane orientation of the observed grains is obtained leveraging Burgers orientation relationship. Microstructural descriptors related to convolutional neural networks are extracted from the 2D micrographs, and used for cross-section-based optimization of pixel values in a 3D volume. In order to reconstruct crystallographic orientations, the orientation distribution of the basketweave microstructure is reduced to a discrete set of characteristic orientations, which are sequentially reconstructed as separate components. Our reconstructions capture the characteristic lath morphology that is typically observed in powder bed fusion-processed Ti-6Al-4V and perform well in comparisons of chord length, as well as grain size, aspect ratio, and axis orientation distributions.

Abstract Image

Abstract Image

通过优化可变微观结构描述符生成 Ti-6Al-4V 篮织微观结构的三维重建
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信