{"title":"Adaptive Mesh Refinement for Arbitrary Initial Triangulations","authors":"Lars Diening, Lukas Gehring, Johannes Storn","doi":"10.1007/s10208-025-09698-7","DOIUrl":null,"url":null,"abstract":"<p>We introduce a simple initialization of the Maubach bisection routine for adaptive mesh refinement which applies to any conforming initial triangulation and terminates in linear time with respect to the number of initial vertices. We show that Maubach’s routine with this initialization always terminates and generates meshes that preserve shape regularity and satisfy the closure estimate needed for optimal convergence of adaptive schemes. Our ansatz allows for the intrinsic use of existing implementations.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"21 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09698-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a simple initialization of the Maubach bisection routine for adaptive mesh refinement which applies to any conforming initial triangulation and terminates in linear time with respect to the number of initial vertices. We show that Maubach’s routine with this initialization always terminates and generates meshes that preserve shape regularity and satisfy the closure estimate needed for optimal convergence of adaptive schemes. Our ansatz allows for the intrinsic use of existing implementations.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.