Hongyu Li, Bing Su, Yan Jiang, Boyang Zhang, Rulong Du, Can Song, Bin Hou, Kun Xu, Lida Wu, Yuchun Gu
{"title":"Circular RNA circDCUN1D4 suppresses hepatocellular carcinoma development via targeting the miR-590-5p/ TIMP3 axis","authors":"Hongyu Li, Bing Su, Yan Jiang, Boyang Zhang, Rulong Du, Can Song, Bin Hou, Kun Xu, Lida Wu, Yuchun Gu","doi":"10.1186/s12943-025-02300-2","DOIUrl":null,"url":null,"abstract":"Hepatocellular carcinoma (HCC) is a major global health concern, necessitating innovative therapeutic strategies. In this study, we investigated the functional role of circular RNA circDCUN1D4 in HCC progression and its potential therapeutic implications. It was found that HCC patients exhibiting higher levels of circDCUN1D4 demonstrated a more favorable survival rate. Furthermore, we revealed that circDCUN1D4 suppressed HCC cell proliferation, migration, and invasion. Mechanistically, circDCUN1D4 was identified as a sponge for miR-590-5p, leading to the downregulation of its downstream target, Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Importantly, circDCUN1D4 administration through In vivo jet-PEI exhibited a robust inhibitory effect on tumor progression without causing notable toxicity in mice. Overall, our findings highlight circDCUN1D4 as a promising therapeutic candidate for HCC, unraveling its intricate regulatory role through the miR-590-5p/TIMP3 axis. This study contributes valuable insights into the potential clinical applications of circRNA-based therapies for HCC.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"14 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02300-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a major global health concern, necessitating innovative therapeutic strategies. In this study, we investigated the functional role of circular RNA circDCUN1D4 in HCC progression and its potential therapeutic implications. It was found that HCC patients exhibiting higher levels of circDCUN1D4 demonstrated a more favorable survival rate. Furthermore, we revealed that circDCUN1D4 suppressed HCC cell proliferation, migration, and invasion. Mechanistically, circDCUN1D4 was identified as a sponge for miR-590-5p, leading to the downregulation of its downstream target, Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Importantly, circDCUN1D4 administration through In vivo jet-PEI exhibited a robust inhibitory effect on tumor progression without causing notable toxicity in mice. Overall, our findings highlight circDCUN1D4 as a promising therapeutic candidate for HCC, unraveling its intricate regulatory role through the miR-590-5p/TIMP3 axis. This study contributes valuable insights into the potential clinical applications of circRNA-based therapies for HCC.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.