Myosin binding protein-C modulates loaded sarcomere shortening in rodent permeabilized cardiac myocytes.

IF 3.3 2区 医学 Q1 PHYSIOLOGY
Journal of General Physiology Pub Date : 2025-05-05 Epub Date: 2025-03-24 DOI:10.1085/jgp.202413678
Kerry S McDonald, Theodore J Kalogeris, Adam B Veteto, Daniel J Davis, Laurin M Hanft
{"title":"Myosin binding protein-C modulates loaded sarcomere shortening in rodent permeabilized cardiac myocytes.","authors":"Kerry S McDonald, Theodore J Kalogeris, Adam B Veteto, Daniel J Davis, Laurin M Hanft","doi":"10.1085/jgp.202413678","DOIUrl":null,"url":null,"abstract":"<p><p>During the ejection phase of the cardiac cycle, left ventricular (LV) cardiac myocytes undergo loaded shortening and generate power. However, few studies have measured sarcomere shortening during loaded contractions. Here, we simultaneously monitored muscle length (ML) and sarcomere length (SL) during isotonic contractions in rodent permeabilized LV cardiac myocyte preparations. In permeabilized cardiac myocyte preparations from rats, we found that ML and SL traces were closely matched, as SL velocities were within ∼77% of ML velocities during half-maximal Ca2+ activations. We next tested whether cardiac myosin binding protein-C (cMyBP-C) regulates loaded shortening and power output by modulating cross-bridge availability. We characterized force-velocity and power-load relationships in wildtype (WT) and cMyBP-C deficient (Mybpc3-/-) mouse permeabilized cardiac myocyte preparations, at both the ML and SL level, before and after treatment with the small molecule myosin inhibitor, mavacamten. We found that SL traces closely matched ML traces in both WT and Mybpc3-/- cardiac myocytes. However, Mybpc3-/- cardiac myocytes exhibited disproportionately high sarcomere shortening velocities at high loads. Interestingly, in Mybpc3-/- cardiac myocytes, 0.5 µM mavacamten slowed SL-loaded shortening across the force-velocity curve and normalized SL shortening velocity at high loads. Overall, these results suggest that cMyBP-C moderates sarcomere-loaded shortening, especially at high loads, at least in part, by modulating cross-bridge availability.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202413678","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During the ejection phase of the cardiac cycle, left ventricular (LV) cardiac myocytes undergo loaded shortening and generate power. However, few studies have measured sarcomere shortening during loaded contractions. Here, we simultaneously monitored muscle length (ML) and sarcomere length (SL) during isotonic contractions in rodent permeabilized LV cardiac myocyte preparations. In permeabilized cardiac myocyte preparations from rats, we found that ML and SL traces were closely matched, as SL velocities were within ∼77% of ML velocities during half-maximal Ca2+ activations. We next tested whether cardiac myosin binding protein-C (cMyBP-C) regulates loaded shortening and power output by modulating cross-bridge availability. We characterized force-velocity and power-load relationships in wildtype (WT) and cMyBP-C deficient (Mybpc3-/-) mouse permeabilized cardiac myocyte preparations, at both the ML and SL level, before and after treatment with the small molecule myosin inhibitor, mavacamten. We found that SL traces closely matched ML traces in both WT and Mybpc3-/- cardiac myocytes. However, Mybpc3-/- cardiac myocytes exhibited disproportionately high sarcomere shortening velocities at high loads. Interestingly, in Mybpc3-/- cardiac myocytes, 0.5 µM mavacamten slowed SL-loaded shortening across the force-velocity curve and normalized SL shortening velocity at high loads. Overall, these results suggest that cMyBP-C moderates sarcomere-loaded shortening, especially at high loads, at least in part, by modulating cross-bridge availability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
10.50%
发文量
88
审稿时长
6-12 weeks
期刊介绍: General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization. The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信