Curvature estimation techniques for advancing neurodegenerative disease analysis: a systematic review of machine learning and deep learning approaches.

American journal of neurodegenerative disease Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.62347/DZNQ2482
Seyed-Ali Sadegh-Zadeh, Nasrin Sadeghzadeh, Bahareh Sedighi, Elaheh Rahpeyma, Mahdiyeh Nilgounbakht, Mohammad Amin Barati
{"title":"Curvature estimation techniques for advancing neurodegenerative disease analysis: a systematic review of machine learning and deep learning approaches.","authors":"Seyed-Ali Sadegh-Zadeh, Nasrin Sadeghzadeh, Bahareh Sedighi, Elaheh Rahpeyma, Mahdiyeh Nilgounbakht, Mohammad Amin Barati","doi":"10.62347/DZNQ2482","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases present complex challenges that demand advanced analytical techniques to decode intricate brain structures and their changes over time. Curvature estimation within datasets has emerged as a critical tool in areas like neuroimaging and pattern recognition, with significant applications in diagnosing and understanding neurodegenerative diseases. This systematic review assesses state-of-the-art curvature estimation methodologies, covering classical mathematical techniques, machine learning, deep learning, and hybrid methods. Analysing 105 research papers from 2010 to 2023, we explore how each approach enhances our understanding of structural variations in neurodegenerative pathology. Our findings highlight a shift from classical methods to machine learning and deep learning, with neural network regression and convolutional neural networks gaining traction due to their precision in handling complex geometries and data-driven modelling. Hybrid methods further demonstrate the potential to merge classical and modern techniques for robust curvature estimation. This comprehensive review aims to equip researchers and clinicians with insights into effective curvature estimation methods, supporting the development of enhanced diagnostic tools and interventions for neurodegenerative diseases.</p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"14 1","pages":"1-33"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of neurodegenerative disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/DZNQ2482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases present complex challenges that demand advanced analytical techniques to decode intricate brain structures and their changes over time. Curvature estimation within datasets has emerged as a critical tool in areas like neuroimaging and pattern recognition, with significant applications in diagnosing and understanding neurodegenerative diseases. This systematic review assesses state-of-the-art curvature estimation methodologies, covering classical mathematical techniques, machine learning, deep learning, and hybrid methods. Analysing 105 research papers from 2010 to 2023, we explore how each approach enhances our understanding of structural variations in neurodegenerative pathology. Our findings highlight a shift from classical methods to machine learning and deep learning, with neural network regression and convolutional neural networks gaining traction due to their precision in handling complex geometries and data-driven modelling. Hybrid methods further demonstrate the potential to merge classical and modern techniques for robust curvature estimation. This comprehensive review aims to equip researchers and clinicians with insights into effective curvature estimation methods, supporting the development of enhanced diagnostic tools and interventions for neurodegenerative diseases.

推进神经退行性疾病分析的曲率估计技术:机器学习和深度学习方法的系统回顾。
神经退行性疾病提出了复杂的挑战,需要先进的分析技术来解码复杂的大脑结构及其随时间的变化。数据集中的曲率估计已经成为神经成像和模式识别等领域的关键工具,在诊断和理解神经退行性疾病方面具有重要应用。这篇系统的综述评估了最先进的曲率估计方法,包括经典数学技术、机器学习、深度学习和混合方法。分析了2010年至2023年的105篇研究论文,我们探讨了每种方法如何增强我们对神经退行性病理结构变化的理解。我们的研究结果强调了从经典方法到机器学习和深度学习的转变,神经网络回归和卷积神经网络因其在处理复杂几何和数据驱动建模方面的精度而受到关注。混合方法进一步展示了融合经典和现代鲁棒曲率估计技术的潜力。本综述旨在为研究人员和临床医生提供有效的曲率估计方法,支持神经退行性疾病的增强诊断工具和干预措施的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信