Sticking together: Polymerization of sickle hemoglobin drives the multiscale pathophysiology of sickle cell disease.

IF 2.9 Q2 BIOPHYSICS
Biophysics reviews Pub Date : 2025-03-20 eCollection Date: 2025-03-01 DOI:10.1063/5.0238698
Dillon C Williams, Hannah M Szafraniec, David K Wood
{"title":"Sticking together: Polymerization of sickle hemoglobin drives the multiscale pathophysiology of sickle cell disease.","authors":"Dillon C Williams, Hannah M Szafraniec, David K Wood","doi":"10.1063/5.0238698","DOIUrl":null,"url":null,"abstract":"<p><p>Sickle cell disease is a hereditary disorder in which the pathophysiology is driven by the aggregation of a mutant (sickle) hemoglobin (HbS). The self-assembly of deoxygenated sickle hemoglobin molecules into ordered fiber structures has consequences extending to the cellular and rheological levels, stiffening red blood cells and inducing pathological flow behavior. This review explores the current understanding of the molecular processes involved in the polymerization of hemoglobin in sickle cell disease and how the molecular phase transition creates quantifiable changes at the cellular and rheological scale, as well as, identifying knowledge gaps in the field that would improve our understanding of the disease and further improve treatment and management of the disease.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":"6 1","pages":"011309"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0238698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sickle cell disease is a hereditary disorder in which the pathophysiology is driven by the aggregation of a mutant (sickle) hemoglobin (HbS). The self-assembly of deoxygenated sickle hemoglobin molecules into ordered fiber structures has consequences extending to the cellular and rheological levels, stiffening red blood cells and inducing pathological flow behavior. This review explores the current understanding of the molecular processes involved in the polymerization of hemoglobin in sickle cell disease and how the molecular phase transition creates quantifiable changes at the cellular and rheological scale, as well as, identifying knowledge gaps in the field that would improve our understanding of the disease and further improve treatment and management of the disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信