CXCR5-targeted chimeric antigen receptor T regulatory cells for the selective inhibition of follicular helper T cell and B cell interaction.

IF 3.7 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Aiko Murai, Masashi Iwata, Shuuichi Miyakawa, Dnyaneshwar Warude, Masaki Sagara, Yusuke Kikukawa
{"title":"CXCR5-targeted chimeric antigen receptor T regulatory cells for the selective inhibition of follicular helper T cell and B cell interaction.","authors":"Aiko Murai, Masashi Iwata, Shuuichi Miyakawa, Dnyaneshwar Warude, Masaki Sagara, Yusuke Kikukawa","doi":"10.1016/j.jcyt.2024.12.015","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The dysregulation of follicular helper T (Tfh) cell function, followed by the proliferation of self-reactive B cells, can lead to the development of autoimmune diseases. Recently, adaptive T regulatory cell (Treg) transfer therapy has attracted considerable attention for inducing effective immune tolerance owing to Tregs' diverse immune-inhibitory activities. However, preclinical studies and recent clinical trials of polyclonal Treg therapy have suggested further improving the efficacy of Treg therapy through targeted tissue specificity and local persistence by gene engineering. In this study, we reported a novel approach to specifically inhibit Tfh cells by CXC motif chemokine receptor 5-targeted chimeric antigen receptor (CXCR5-CAR) Tregs.</p><p><strong>Methods: </strong>Tregs expressing CAR against CXCR5 were generated from human peripheral blood mononuclear cells-derived Tregs. The phenotype and suppressive capacity of the engineered Tregs were evaluated using coculture assays with naïve T cells, circulating Tfh (cTfh) cells, or a combination of cTfh cells and naïve B cells through flow cytometry analysis.</p><p><strong>Result: </strong>CXCR5-CAR Tregs induced more potent inhibition of circulating cTfh cell proliferation while maintaining similar suppressive properties on CXCR5-negative responder cells compared with non-selective polyclonal Tregs. The antigen-dependent activation of CXCR5-CAR Tregs was confirmed by latency-associated peptide (LAP) expression in the coculture with cTfh cells. In the coculture condition with both cTfh and naïve B cells, the activation of naïve B cells induced by cTfh cells was more effectively inhibited by CXCR5-CAR Tregs than by polyclonal Tregs.</p><p><strong>Conclusion: </strong>The results demonstrate the potential of CXCR5-CAR Tregs to effectively inhibit the Tfh-B cell response in autoimmune diseases, paving the way for further research to confirm their functional superiority in vivo. This novel approach offers promise for achieving local, long-term immune tolerance compared with existing approaches such as nonspecific immunosuppression and polyclonal Treg therapy.</p>","PeriodicalId":50597,"journal":{"name":"Cytotherapy","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcyt.2024.12.015","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The dysregulation of follicular helper T (Tfh) cell function, followed by the proliferation of self-reactive B cells, can lead to the development of autoimmune diseases. Recently, adaptive T regulatory cell (Treg) transfer therapy has attracted considerable attention for inducing effective immune tolerance owing to Tregs' diverse immune-inhibitory activities. However, preclinical studies and recent clinical trials of polyclonal Treg therapy have suggested further improving the efficacy of Treg therapy through targeted tissue specificity and local persistence by gene engineering. In this study, we reported a novel approach to specifically inhibit Tfh cells by CXC motif chemokine receptor 5-targeted chimeric antigen receptor (CXCR5-CAR) Tregs.

Methods: Tregs expressing CAR against CXCR5 were generated from human peripheral blood mononuclear cells-derived Tregs. The phenotype and suppressive capacity of the engineered Tregs were evaluated using coculture assays with naïve T cells, circulating Tfh (cTfh) cells, or a combination of cTfh cells and naïve B cells through flow cytometry analysis.

Result: CXCR5-CAR Tregs induced more potent inhibition of circulating cTfh cell proliferation while maintaining similar suppressive properties on CXCR5-negative responder cells compared with non-selective polyclonal Tregs. The antigen-dependent activation of CXCR5-CAR Tregs was confirmed by latency-associated peptide (LAP) expression in the coculture with cTfh cells. In the coculture condition with both cTfh and naïve B cells, the activation of naïve B cells induced by cTfh cells was more effectively inhibited by CXCR5-CAR Tregs than by polyclonal Tregs.

Conclusion: The results demonstrate the potential of CXCR5-CAR Tregs to effectively inhibit the Tfh-B cell response in autoimmune diseases, paving the way for further research to confirm their functional superiority in vivo. This novel approach offers promise for achieving local, long-term immune tolerance compared with existing approaches such as nonspecific immunosuppression and polyclonal Treg therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotherapy
Cytotherapy 医学-生物工程与应用微生物
CiteScore
6.30
自引率
4.40%
发文量
683
审稿时长
49 days
期刊介绍: The journal brings readers the latest developments in the fast moving field of cellular therapy in man. This includes cell therapy for cancer, immune disorders, inherited diseases, tissue repair and regenerative medicine. The journal covers the science, translational development and treatment with variety of cell types including hematopoietic stem cells, immune cells (dendritic cells, NK, cells, T cells, antigen presenting cells) mesenchymal stromal cells, adipose cells, nerve, muscle, vascular and endothelial cells, and induced pluripotential stem cells. We also welcome manuscripts on subcellular derivatives such as exosomes. A specific focus is on translational research that brings cell therapy to the clinic. Cytotherapy publishes original papers, reviews, position papers editorials, commentaries and letters to the editor. We welcome "Protocols in Cytotherapy" bringing standard operating procedure for production specific cell types for clinical use within the reach of the readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信