AMP-activated protein kinase mediates adaptation of glioblastoma cells to conditions of the tumor microenvironment.

IF 11.4 1区 医学 Q1 ONCOLOGY
Nadja I Lorenz, Benedikt Sauer, Hans Urban, Jan-Béla Weinem, Bhavesh S Parmar, Pia S Zeiner, Maja I Strecker, Dorothea Schulte, Michel Mittelbronn, Tijna Alekseeva, Lisa Sevenich, Patrick N Harter, Christian Münch, Joachim P Steinbach, Anna-Luisa Luger, Dieter Henrik Heiland, Michael W Ronellenfitsch
{"title":"AMP-activated protein kinase mediates adaptation of glioblastoma cells to conditions of the tumor microenvironment.","authors":"Nadja I Lorenz, Benedikt Sauer, Hans Urban, Jan-Béla Weinem, Bhavesh S Parmar, Pia S Zeiner, Maja I Strecker, Dorothea Schulte, Michel Mittelbronn, Tijna Alekseeva, Lisa Sevenich, Patrick N Harter, Christian Münch, Joachim P Steinbach, Anna-Luisa Luger, Dieter Henrik Heiland, Michael W Ronellenfitsch","doi":"10.1186/s13046-025-03346-2","DOIUrl":null,"url":null,"abstract":"<p><p>AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolic activity. We hypothesized that in glioblastoma (GB), AMPK plays a pivotal role in balancing metabolism under conditions of the tumor microenvironment with fluctuating and often low nutrient and oxygen availability. Impairment of this network could thus interfere with tumor progression. AMPK activity was modulated genetically by CRISPR/Cas9-based double knockout (DKO) of the catalytic α1 and α2 subunits in human GB cells and effects were confirmed by pharmacological AMPK inhibition using BAY3827 and an inactive control compound in primary GB cell cultures. We found that metabolic adaptation of GB cells under energy stress conditions (hypoxia, glucose deprivation) was dependent on AMPK and accordingly that AMPK DKO cells were more vulnerable to glucose deprivation or inhibition of glycolysis and sensitized to hypoxia-induced cell death. This effect was rescued by reexpression of the AMPK α2 subunit. Similar results were observed using the selective pharmacological AMPK inhibitor BAY3827. Mitochondrial biogenesis was regulated AMPK-dependently with a reduced mitochondrial mass and mitochondrial membrane potential in AMPK DKO GB cells. In vivo, AMPK DKO GB cells showed impaired tumor growth and tumor formation in CAM assays as well as in an orthotopic glioma mouse model. Our study highlights the importance of AMPK for GB cell adaptation towards energy depletion and emphasizes the role of AMPK for tumor formation in vivo. Moreover, we identified mitochondria as central downstream effectors of AMPK signaling. The development of AMPK inhibitors could open opportunities for the treatment of hypoxic tumors.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"104"},"PeriodicalIF":11.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03346-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolic activity. We hypothesized that in glioblastoma (GB), AMPK plays a pivotal role in balancing metabolism under conditions of the tumor microenvironment with fluctuating and often low nutrient and oxygen availability. Impairment of this network could thus interfere with tumor progression. AMPK activity was modulated genetically by CRISPR/Cas9-based double knockout (DKO) of the catalytic α1 and α2 subunits in human GB cells and effects were confirmed by pharmacological AMPK inhibition using BAY3827 and an inactive control compound in primary GB cell cultures. We found that metabolic adaptation of GB cells under energy stress conditions (hypoxia, glucose deprivation) was dependent on AMPK and accordingly that AMPK DKO cells were more vulnerable to glucose deprivation or inhibition of glycolysis and sensitized to hypoxia-induced cell death. This effect was rescued by reexpression of the AMPK α2 subunit. Similar results were observed using the selective pharmacological AMPK inhibitor BAY3827. Mitochondrial biogenesis was regulated AMPK-dependently with a reduced mitochondrial mass and mitochondrial membrane potential in AMPK DKO GB cells. In vivo, AMPK DKO GB cells showed impaired tumor growth and tumor formation in CAM assays as well as in an orthotopic glioma mouse model. Our study highlights the importance of AMPK for GB cell adaptation towards energy depletion and emphasizes the role of AMPK for tumor formation in vivo. Moreover, we identified mitochondria as central downstream effectors of AMPK signaling. The development of AMPK inhibitors could open opportunities for the treatment of hypoxic tumors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信