{"title":"Mediator-29 Limits Caenorhabditis elegans Fecundity.","authors":"Qi Fan, Christopher Tran, Wei Cao, Roger Pocock","doi":"10.1093/genetics/iyaf051","DOIUrl":null,"url":null,"abstract":"<p><p>Mediator is an evolutionarily conserved multiprotein complex that acts as a critical coregulator of RNA polymerase II-mediated transcription. While core Mediator components are broadly required for transcription, others govern specific regulatory modules and signalling pathways. Here, we investigated the function of MDT-29/MED29 in the Caenorhabditis elegans germ line. We found that endogenously-tagged MDT-29 is ubiquitously expressed and concentrated in discrete foci within germ cell nuclei. Functionally, depleting MDT-29 in the germ line during larval development boosted fecundity. We determined that the increase in progeny production was likely caused by a combination of an expanded germline stem cell pool and decreased germ cell apoptosis. Thus, MDT-29 may act to optimize specific gene expression programs to control distinct germ cell behaviors, providing flexibility to progeny production in certain environments.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf051","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Mediator is an evolutionarily conserved multiprotein complex that acts as a critical coregulator of RNA polymerase II-mediated transcription. While core Mediator components are broadly required for transcription, others govern specific regulatory modules and signalling pathways. Here, we investigated the function of MDT-29/MED29 in the Caenorhabditis elegans germ line. We found that endogenously-tagged MDT-29 is ubiquitously expressed and concentrated in discrete foci within germ cell nuclei. Functionally, depleting MDT-29 in the germ line during larval development boosted fecundity. We determined that the increase in progeny production was likely caused by a combination of an expanded germline stem cell pool and decreased germ cell apoptosis. Thus, MDT-29 may act to optimize specific gene expression programs to control distinct germ cell behaviors, providing flexibility to progeny production in certain environments.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.