Quadratic Euler characteristic of symmetric powers of curves.

IF 0.5 4区 数学 Q3 MATHEMATICS
Manuscripta Mathematica Pub Date : 2025-01-01 Epub Date: 2025-03-20 DOI:10.1007/s00229-025-01623-0
Lukas F Bröring, Anna M Viergever
{"title":"Quadratic Euler characteristic of symmetric powers of curves.","authors":"Lukas F Bröring, Anna M Viergever","doi":"10.1007/s00229-025-01623-0","DOIUrl":null,"url":null,"abstract":"<p><p>We compute the quadratic Euler characteristic of the symmetric powers of a smooth, projective curve over any field <i>k</i> that is not of characteristic two, using the Motivic Gauss-Bonnet Theorem of Levine-Raksit. As an application, we show that the power structure on the Grothendieck-Witt ring introduced by Pajwani-Pál computes the compactly supported <math> <msup><mrow><mi>A</mi></mrow> <mn>1</mn></msup> </math> -Euler characteristic of symmetric powers for all curves.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"176 2","pages":"26"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-025-01623-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the quadratic Euler characteristic of the symmetric powers of a smooth, projective curve over any field k that is not of characteristic two, using the Motivic Gauss-Bonnet Theorem of Levine-Raksit. As an application, we show that the power structure on the Grothendieck-Witt ring introduced by Pajwani-Pál computes the compactly supported A 1 -Euler characteristic of symmetric powers for all curves.

曲线对称幂的二次欧拉特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信