{"title":"The role of large language models in the peer-review process: opportunities and challenges for medical journal reviewers and editors.","authors":"Jisoo Lee, Jieun Lee, Jeong-Ju Yoo","doi":"10.3352/jeehp.2025.22.4","DOIUrl":null,"url":null,"abstract":"<p><p>The peer review process ensures the integrity of scientific research. This is particularly important in the medical field, where research findings directly impact patient care. However, the rapid growth of publications has strained reviewers, causing delays and potential declines in quality. Generative artificial intelligence, especially large language models (LLMs) such as ChatGPT, may assist researchers with efficient, high-quality reviews. This review explores the integration of LLMs into peer review, highlighting their strengths in linguistic tasks and challenges in assessing scientific validity, particularly in clinical medicine. Key points for integration include initial screening, reviewer matching, feedback support, and language review. However, implementing LLMs for these purposes will necessitate addressing biases, privacy concerns, and data confidentiality. We recommend using LLMs as complementary tools under clear guidelines to support, not replace, human expertise in maintaining rigorous peer review standards.</p>","PeriodicalId":46098,"journal":{"name":"Journal of Educational Evaluation for Health Professions","volume":"22 ","pages":"4"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Evaluation for Health Professions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3352/jeehp.2025.22.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
The peer review process ensures the integrity of scientific research. This is particularly important in the medical field, where research findings directly impact patient care. However, the rapid growth of publications has strained reviewers, causing delays and potential declines in quality. Generative artificial intelligence, especially large language models (LLMs) such as ChatGPT, may assist researchers with efficient, high-quality reviews. This review explores the integration of LLMs into peer review, highlighting their strengths in linguistic tasks and challenges in assessing scientific validity, particularly in clinical medicine. Key points for integration include initial screening, reviewer matching, feedback support, and language review. However, implementing LLMs for these purposes will necessitate addressing biases, privacy concerns, and data confidentiality. We recommend using LLMs as complementary tools under clear guidelines to support, not replace, human expertise in maintaining rigorous peer review standards.
期刊介绍:
Journal of Educational Evaluation for Health Professions aims to provide readers the state-of-the art practical information on the educational evaluation for health professions so that to increase the quality of undergraduate, graduate, and continuing education. It is specialized in educational evaluation including adoption of measurement theory to medical health education, promotion of high stakes examination such as national licensing examinations, improvement of nationwide or international programs of education, computer-based testing, computerized adaptive testing, and medical health regulatory bodies. Its field comprises a variety of professions that address public medical health as following but not limited to: Care workers Dental hygienists Dental technicians Dentists Dietitians Emergency medical technicians Health educators Medical record technicians Medical technologists Midwives Nurses Nursing aides Occupational therapists Opticians Oriental medical doctors Oriental medicine dispensers Oriental pharmacists Pharmacists Physical therapists Physicians Prosthetists and Orthotists Radiological technologists Rehabilitation counselor Sanitary technicians Speech-language therapists.