Open Science at the generative AI turn: An exploratory analysis of challenges and opportunities.

IF 4.1 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Quantitative Science Studies Pub Date : 2025-01-01 Epub Date: 2025-01-27 DOI:10.1162/qss_a_00337
Mohammad Hosseini, Serge P J M Horbach, Kristi Holmes, Tony Ross-Hellauer
{"title":"Open Science at the generative AI turn: An exploratory analysis of challenges and opportunities.","authors":"Mohammad Hosseini, Serge P J M Horbach, Kristi Holmes, Tony Ross-Hellauer","doi":"10.1162/qss_a_00337","DOIUrl":null,"url":null,"abstract":"<p><p>Technology influences Open Science (OS) practices, because conducting science in transparent, accessible, and participatory ways requires tools and platforms for collaboration and sharing results. Due to this relationship, the characteristics of the employed technologies directly impact OS objectives. Generative Artificial Intelligence (GenAI) is increasingly used by researchers for tasks such as text refining, code generation/editing, reviewing literature, and data curation/analysis. Nevertheless, concerns about openness, transparency, and bias suggest that GenAI may benefit from greater engagement with OS. GenAI promises substantial efficiency gains but is currently fraught with limitations that could negatively impact core OS values, such as fairness, transparency, and integrity, and may harm various social actors. In this paper, we explore the possible positive and negative impacts of GenAI on OS. We use the taxonomy within the UNESCO Recommendation on Open Science to systematically explore the intersection of GenAI and OS. We conclude that using GenAI could advance key OS objectives by broadening meaningful access to knowledge, enabling efficient use of infrastructure, improving engagement of societal actors, and enhancing dialogue among knowledge systems. However, due to GenAI's limitations, it could also compromise the integrity, equity, reproducibility, and reliability of research. Hence, sufficient checks, validation, and critical assessments are essential when incorporating GenAI into research workflows.</p>","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"6 ","pages":"22-45"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Science Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/qss_a_00337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Technology influences Open Science (OS) practices, because conducting science in transparent, accessible, and participatory ways requires tools and platforms for collaboration and sharing results. Due to this relationship, the characteristics of the employed technologies directly impact OS objectives. Generative Artificial Intelligence (GenAI) is increasingly used by researchers for tasks such as text refining, code generation/editing, reviewing literature, and data curation/analysis. Nevertheless, concerns about openness, transparency, and bias suggest that GenAI may benefit from greater engagement with OS. GenAI promises substantial efficiency gains but is currently fraught with limitations that could negatively impact core OS values, such as fairness, transparency, and integrity, and may harm various social actors. In this paper, we explore the possible positive and negative impacts of GenAI on OS. We use the taxonomy within the UNESCO Recommendation on Open Science to systematically explore the intersection of GenAI and OS. We conclude that using GenAI could advance key OS objectives by broadening meaningful access to knowledge, enabling efficient use of infrastructure, improving engagement of societal actors, and enhancing dialogue among knowledge systems. However, due to GenAI's limitations, it could also compromise the integrity, equity, reproducibility, and reliability of research. Hence, sufficient checks, validation, and critical assessments are essential when incorporating GenAI into research workflows.

生成式人工智能转向的开放科学:挑战与机遇的探索性分析。
技术影响开放科学实践,因为以透明、可获取和参与性的方式开展科学研究需要工具和平台来进行协作和分享结果。由于这种关系,所采用技术的特性直接影响操作系统的目标。生成式人工智能(GenAI)越来越多地被研究人员用于文本精炼、代码生成/编辑、文献审查和数据管理/分析等任务。然而,对开放性、透明度和偏见的担忧表明,GenAI可能会从与OS的更多接触中受益。GenAI承诺大幅提高效率,但目前充满了可能对核心操作系统价值(如公平性、透明度和完整性)产生负面影响的局限性,并可能损害各种社会参与者。在本文中,我们探讨了GenAI对操作系统可能产生的积极和消极影响。我们使用联合国教科文组织开放科学建议中的分类法系统地探索GenAI和OS的交集。我们的结论是,使用GenAI可以通过拓宽有意义的知识获取途径、实现基础设施的有效利用、改善社会行动者的参与以及加强知识系统之间的对话来推进关键的操作系统目标。然而,由于GenAI的局限性,它也可能损害研究的完整性、公平性、可重复性和可靠性。因此,在将GenAI纳入研究工作流程时,充分的检查、验证和关键评估是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Science Studies
Quantitative Science Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
12.10
自引率
12.50%
发文量
46
审稿时长
22 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信