E M J L Postuma, F W Cornelissen, M Pahlevan, J Heutink, G A de Haan
{"title":"Reduced field of view alters scanning behaviour.","authors":"E M J L Postuma, F W Cornelissen, M Pahlevan, J Heutink, G A de Haan","doi":"10.1007/s10055-025-01125-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Virtual reality environments presented through head mounted displays (HMDs) hold promise for training or studying mobility activities, such as cycling, walking, and street crossing. Yet, the limited field of view (FoV) of HMDs may influence scanning behaviour, reducing the translatability of findings to real-life situations. This study aims to (i) investigate how a reduced FoV influences scanning behaviour during mobility activities, and (ii) whether these alterations in scanning vary across these activities.</p><p><strong>Method: </strong>Sixteen participants performed a real-life walking, cycling and street crossing activity twice; once with and once without a reduced FoV. A mobile eye-tracker with a built in gyroscope recorded scanning behaviour. Scanning behaviour was evaluated in terms of saccadic frequency and amplitude, horizontal head movement frequency and amplitude, and the horizontal and vertical eye position.</p><p><strong>Results: </strong>The participants performed more horizontal head movements with larger amplitudes during the reduced FoV compared to the normal FoV. Additionally, they distributed their horizontal eye position more towards the central regions and less towards their peripheral regions. Overall, the range of both horizontal and vertical eye position decreased. The impact of the reduced FoV on horizontal head movement amplitude, horizontal eye position, and vertical eye position varied across activities.</p><p><strong>Conclusion: </strong>Generally, individuals seem to compensate for a reduced FoV by making more horizontal head movements with large amplitudes, while reducing the eye position distribution. Consequently, caution is advised when translating outcomes on scanning behaviour observed in HMDs to those expected in real-life situations.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10055-025-01125-0.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":"29 2","pages":"55"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-025-01125-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Virtual reality environments presented through head mounted displays (HMDs) hold promise for training or studying mobility activities, such as cycling, walking, and street crossing. Yet, the limited field of view (FoV) of HMDs may influence scanning behaviour, reducing the translatability of findings to real-life situations. This study aims to (i) investigate how a reduced FoV influences scanning behaviour during mobility activities, and (ii) whether these alterations in scanning vary across these activities.
Method: Sixteen participants performed a real-life walking, cycling and street crossing activity twice; once with and once without a reduced FoV. A mobile eye-tracker with a built in gyroscope recorded scanning behaviour. Scanning behaviour was evaluated in terms of saccadic frequency and amplitude, horizontal head movement frequency and amplitude, and the horizontal and vertical eye position.
Results: The participants performed more horizontal head movements with larger amplitudes during the reduced FoV compared to the normal FoV. Additionally, they distributed their horizontal eye position more towards the central regions and less towards their peripheral regions. Overall, the range of both horizontal and vertical eye position decreased. The impact of the reduced FoV on horizontal head movement amplitude, horizontal eye position, and vertical eye position varied across activities.
Conclusion: Generally, individuals seem to compensate for a reduced FoV by making more horizontal head movements with large amplitudes, while reducing the eye position distribution. Consequently, caution is advised when translating outcomes on scanning behaviour observed in HMDs to those expected in real-life situations.
Supplementary information: The online version contains supplementary material available at 10.1007/s10055-025-01125-0.
期刊介绍:
The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to:
Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications
Development and evaluation of systems, tools, techniques and software that advance the field, including:
Display technologies, including Head Mounted Displays, simulators and immersive displays
Haptic technologies, including novel devices, interaction and rendering
Interaction management, including gesture control, eye gaze, biosensors and wearables
Tracking technologies
VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling.
Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence
Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems
Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.