Reconstructing 3D chromosome structures from single-cell Hi-C data with SO(3)-equivariant graph neural networks.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-03-22 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqaf027
Yanli Wang, Jianlin Cheng
{"title":"Reconstructing 3D chromosome structures from single-cell Hi-C data with SO(3)-equivariant graph neural networks.","authors":"Yanli Wang, Jianlin Cheng","doi":"10.1093/nargab/lqaf027","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial conformation of chromosomes and genomes of single cells is relevant to cellular function and useful for elucidating the mechanism underlying gene expression and genome methylation. The chromosomal contacts (i.e. chromosomal regions in spatial proximity) entailing the three-dimensional (3D) structure of the genome of a single cell can be obtained by single-cell chromosome conformation capture techniques, such as single-cell Hi-C (ScHi-C). However, due to the sparsity of chromosomal contacts in ScHi-C data, it is still challenging for traditional 3D conformation optimization methods to reconstruct the 3D chromosome structures from ScHi-C data. Here, we present a machine learning-based method based on a novel SO(3)-equivariant graph neural network (HiCEGNN) to reconstruct 3D structures of chromosomes of single cells from ScHi-C data. HiCEGNN consistently outperforms both the traditional optimization methods and the only other deep learning method across diverse cells, different structural resolutions, and different noise levels of the data. Moreover, HiCEGNN is robust against the noise in the ScHi-C data.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf027"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The spatial conformation of chromosomes and genomes of single cells is relevant to cellular function and useful for elucidating the mechanism underlying gene expression and genome methylation. The chromosomal contacts (i.e. chromosomal regions in spatial proximity) entailing the three-dimensional (3D) structure of the genome of a single cell can be obtained by single-cell chromosome conformation capture techniques, such as single-cell Hi-C (ScHi-C). However, due to the sparsity of chromosomal contacts in ScHi-C data, it is still challenging for traditional 3D conformation optimization methods to reconstruct the 3D chromosome structures from ScHi-C data. Here, we present a machine learning-based method based on a novel SO(3)-equivariant graph neural network (HiCEGNN) to reconstruct 3D structures of chromosomes of single cells from ScHi-C data. HiCEGNN consistently outperforms both the traditional optimization methods and the only other deep learning method across diverse cells, different structural resolutions, and different noise levels of the data. Moreover, HiCEGNN is robust against the noise in the ScHi-C data.

利用SO(3)-等变图神经网络从单细胞Hi-C数据重建三维染色体结构。
单细胞染色体和基因组的空间构象与细胞功能有关,有助于阐明基因表达和基因组甲基化的机制。单细胞染色体构象捕获技术,如单细胞Hi-C (ScHi-C),可以获得单细胞基因组三维(3D)结构的染色体接触(即空间接近的染色体区域)。然而,由于ScHi-C数据中染色体接触的稀疏性,传统的三维构象优化方法仍然难以从ScHi-C数据中重建三维染色体结构。在这里,我们提出了一种基于机器学习的方法,该方法基于一种新颖的SO(3)-等变图神经网络(HiCEGNN),从ScHi-C数据中重建单细胞染色体的三维结构。在不同的单元、不同的结构分辨率和不同的噪声水平的数据中,HiCEGNN始终优于传统的优化方法和唯一的其他深度学习方法。此外,HiCEGNN对ScHi-C数据中的噪声具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信