Identification of potential inhibitors of hypoxanthine-guanine phosphoribosyl transferase for cancer treatment by molecular docking, dynamics simulation and in vitro studies.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY
O Afzal, A Altharawi, M A Alamri
{"title":"Identification of potential inhibitors of hypoxanthine-guanine phosphoribosyl transferase for cancer treatment by molecular docking, dynamics simulation and in vitro studies.","authors":"O Afzal, A Altharawi, M A Alamri","doi":"10.1080/1062936X.2025.2478500","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxanthine guanine phosphoribosyltransferase 1 (HPRT1) is a mutational biomarker and a housekeeping human reporter gene that is predominantly employed to assess mutation frequencies associated with cancer development. In this study, our purpose was to identify potential inhibitors against the human hypoxanthine guanine phosphoribosyltransferase (HPRT) protein encoded by HPRT1 gene by employing an integrated in silico approach. The library of 17,967 phytochemicals (IMPPAT 2.0 database) was screened for drug-like properties followed by molecular docking, resulting in the selection of top 20 phytochemicals. Further interaction profile revealed that IMPHY008718 (Gibberellin A34) and IMPHY011650 (Chasmanthin) binds at the GMP binding site of the HPRT1 protein. ADMET properties and biological function predictions of the selected compounds indicate their anticancer potential. Both IMPHY008718 and IMPHY011650 docked complexes were examined in 200 ns MD simulations. Comprehensive MD trajectory analysis was performed in addition to principal component, free energy and MM/PBSA analysis. Furthermore, in vitro human HPRT inhibition assay confirmed and revealed inhibitory potential for Gibberellin A34 (<i>K</i><sub>i</sub> 0.121 µM) and Chasmanthin (<i>K</i><sub>i</sub> 0.368 µM), as compared to standard inhibitor, HGPRT/TBrHGPRT1-IN-1 (<i>K</i><sub>i</sub> 0.032 µM). Overall, these results strongly recommend further experimental work concerning these plant-based molecules as human HPRT inhibitors for anticancer drug development.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"1-20"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2478500","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoxanthine guanine phosphoribosyltransferase 1 (HPRT1) is a mutational biomarker and a housekeeping human reporter gene that is predominantly employed to assess mutation frequencies associated with cancer development. In this study, our purpose was to identify potential inhibitors against the human hypoxanthine guanine phosphoribosyltransferase (HPRT) protein encoded by HPRT1 gene by employing an integrated in silico approach. The library of 17,967 phytochemicals (IMPPAT 2.0 database) was screened for drug-like properties followed by molecular docking, resulting in the selection of top 20 phytochemicals. Further interaction profile revealed that IMPHY008718 (Gibberellin A34) and IMPHY011650 (Chasmanthin) binds at the GMP binding site of the HPRT1 protein. ADMET properties and biological function predictions of the selected compounds indicate their anticancer potential. Both IMPHY008718 and IMPHY011650 docked complexes were examined in 200 ns MD simulations. Comprehensive MD trajectory analysis was performed in addition to principal component, free energy and MM/PBSA analysis. Furthermore, in vitro human HPRT inhibition assay confirmed and revealed inhibitory potential for Gibberellin A34 (Ki 0.121 µM) and Chasmanthin (Ki 0.368 µM), as compared to standard inhibitor, HGPRT/TBrHGPRT1-IN-1 (Ki 0.032 µM). Overall, these results strongly recommend further experimental work concerning these plant-based molecules as human HPRT inhibitors for anticancer drug development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信