{"title":"Reversing Neuronal Klotho Dysfunction-Mediated Diabetic Neuropathy Through 16:8 Intermittent Fasting.","authors":"Ying-Shuang Chang, Yu-Yu Kan, Tzu-Ning Chao, Yi-Hsuan Chen, Yu-Lin Hsieh","doi":"10.1007/s12035-025-04849-x","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin supply is the golden standard for type 1 diabetes mellitus (T1DM) therapy. Is there a drug-reduction application for reversing glucose metabolism disabled and diabetic neuropathy (DN), and is it suitable for the young and elderly populations? Reducing T1DM-associated DN, and maintaining glucose metabolism require using the anti-aging gene Klotho to regulate specific signaling cascades. This study applied five 16:8 intermittent fasting (16-h fasting, 8-h eating; 168if) protocols by different executing times to young and elderly diabetic mice to evaluate whether 168if is age-dependent and how it alters Klotho-related signaling molecules. Blood glucose levels were efficiently reduced when 168if was implemented in the early stage of T1DM onset (DNf group) of young and elderly mice. Another four groups failed to reduce blood sugar. However, the DNf protocol was unsuitable for diabetic elderly mice because it posed a higher mortality risk for this population. Young DNf mice exhibited reduced thermal hyperalgesia and mechanical allodynia and reversed Klotho downregulation and protein kinase C epsilon (PKCε) upregulation compared with DN mice. Furthermore, young DNf mice exhibited normalization of fibroblast growth factor receptor 1 (FGFR1) and nuclear factor κB (NF-κB) expression, which is involved in Klotho-related glucose metabolism and anti-inflammation. The expression densities of PKCε, Klotho, FGFR1, and NF-κB were linear to neuropathic manifestations. This study demonstrated the effectiveness of 168if application in the early stage of T1DM onset, a straightforward and convenient dietary control method, as a blood glucose control for achieving pharmaceutical reduction and relieving neuropathic pain in young T1DM patients.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9483-9496"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04849-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Insulin supply is the golden standard for type 1 diabetes mellitus (T1DM) therapy. Is there a drug-reduction application for reversing glucose metabolism disabled and diabetic neuropathy (DN), and is it suitable for the young and elderly populations? Reducing T1DM-associated DN, and maintaining glucose metabolism require using the anti-aging gene Klotho to regulate specific signaling cascades. This study applied five 16:8 intermittent fasting (16-h fasting, 8-h eating; 168if) protocols by different executing times to young and elderly diabetic mice to evaluate whether 168if is age-dependent and how it alters Klotho-related signaling molecules. Blood glucose levels were efficiently reduced when 168if was implemented in the early stage of T1DM onset (DNf group) of young and elderly mice. Another four groups failed to reduce blood sugar. However, the DNf protocol was unsuitable for diabetic elderly mice because it posed a higher mortality risk for this population. Young DNf mice exhibited reduced thermal hyperalgesia and mechanical allodynia and reversed Klotho downregulation and protein kinase C epsilon (PKCε) upregulation compared with DN mice. Furthermore, young DNf mice exhibited normalization of fibroblast growth factor receptor 1 (FGFR1) and nuclear factor κB (NF-κB) expression, which is involved in Klotho-related glucose metabolism and anti-inflammation. The expression densities of PKCε, Klotho, FGFR1, and NF-κB were linear to neuropathic manifestations. This study demonstrated the effectiveness of 168if application in the early stage of T1DM onset, a straightforward and convenient dietary control method, as a blood glucose control for achieving pharmaceutical reduction and relieving neuropathic pain in young T1DM patients.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.