Delivery of genome editors with engineered virus-like particles.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-03-09 DOI:10.1016/bs.mie.2025.01.007
Christopher Lu, Yuanhang Li, Jacob Ryan Cummings, Samagya Banskota
{"title":"Delivery of genome editors with engineered virus-like particles.","authors":"Christopher Lu, Yuanhang Li, Jacob Ryan Cummings, Samagya Banskota","doi":"10.1016/bs.mie.2025.01.007","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing technologies have revolutionized biomedical sciences and biotechnology. However, their delivery in vivo remains one of the major obstacles for clinical translation. Here, we introduce various emerging genome editing systems and review different delivery systems have been developed to realize the promise of in vivo gene editing therapies. In particular, we focus on virus-like particles (VLPs), an emerging delivery platform and provide in depth analysis on recent advancements to improve VLPs delivery potential and highlight opportunities for future improvements. To this end, we also provide detail workflows for engineered VLP (eVLP) selection, production, and purification, along with methods for characterization and validation.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"712 ","pages":"475-516"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Genome editing technologies have revolutionized biomedical sciences and biotechnology. However, their delivery in vivo remains one of the major obstacles for clinical translation. Here, we introduce various emerging genome editing systems and review different delivery systems have been developed to realize the promise of in vivo gene editing therapies. In particular, we focus on virus-like particles (VLPs), an emerging delivery platform and provide in depth analysis on recent advancements to improve VLPs delivery potential and highlight opportunities for future improvements. To this end, we also provide detail workflows for engineered VLP (eVLP) selection, production, and purification, along with methods for characterization and validation.

基因编辑器与工程病毒样颗粒的传递。
基因组编辑技术已经彻底改变了生物医学科学和生物技术。然而,它们在体内的传递仍然是临床转化的主要障碍之一。在这里,我们介绍了各种新兴的基因组编辑系统,并回顾了为实现体内基因编辑治疗的希望而开发的不同传递系统。我们特别关注病毒样颗粒(vlp),这是一种新兴的递送平台,并对最近的进展进行了深入分析,以提高vlp的递送潜力,并强调了未来改进的机会。为此,我们还提供了工程VLP (eVLP)选择,生产和纯化的详细工作流程,以及表征和验证的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信