Resmi Rajalekshmi, Vikrant Rai, Devendra K Agrawal
{"title":"14-3-3ζ: an optimal housekeeping protein for western blot analysis in swine rotator cuff tendon studies.","authors":"Resmi Rajalekshmi, Vikrant Rai, Devendra K Agrawal","doi":"10.1007/s11010-025-05255-6","DOIUrl":null,"url":null,"abstract":"<p><p>Healthy biomechanics of the shoulder involving rotator cuff muscles and rotator cuff tendon (RCT) is pivotal for joint stability, yet co-morbid conditions like hyperlipidemia and hyperglycemia can lead to degenerative changes jeopardizing tendon integrity. A change in protein expression, the functional moiety for molecular events, may result in altered healing of RCT and prolonged morbidity. Expression and activity of proteins are critical while investigating the underlying molecular and cellular changes involved in tendinopathy. While investigating the changes in the protein expression of various inflammatory mediators, we observed that the Western Blot bands for commonly used housekeeping genes (GAPDH, β-actin, and α-tubulin) were not uniform in different tendon samples. Therefore, we investigated for an optimal housekeeping gene for Western blot analysis in swine RCT under normal and hyperlipidemic conditions, as this is essential for accurate normalization of protein expression. The study evaluated several housekeeping genes-GAPDH, beta-actin, alpha and beta-tubulin, Ubiquitin C, Cyclophilin A, TATA-box binding protein, and 14-3-3ζ-to ensure robust normalization across experimental setups. The results revealed that the protein expression of 14-3-3ζ was uniform in all samples, thereby validating its suitability as a stable housekeeping protein. The findings are important while studying the RCT pathology in a clinically relevant animal model, like swine, which mimics human RCT and provides translationally significant findings. Thus, the 14-3-3ζ protein will be an ideal housekeeping gene in the design of experiments utilizing musculoskeletal tissues.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05255-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Healthy biomechanics of the shoulder involving rotator cuff muscles and rotator cuff tendon (RCT) is pivotal for joint stability, yet co-morbid conditions like hyperlipidemia and hyperglycemia can lead to degenerative changes jeopardizing tendon integrity. A change in protein expression, the functional moiety for molecular events, may result in altered healing of RCT and prolonged morbidity. Expression and activity of proteins are critical while investigating the underlying molecular and cellular changes involved in tendinopathy. While investigating the changes in the protein expression of various inflammatory mediators, we observed that the Western Blot bands for commonly used housekeeping genes (GAPDH, β-actin, and α-tubulin) were not uniform in different tendon samples. Therefore, we investigated for an optimal housekeeping gene for Western blot analysis in swine RCT under normal and hyperlipidemic conditions, as this is essential for accurate normalization of protein expression. The study evaluated several housekeeping genes-GAPDH, beta-actin, alpha and beta-tubulin, Ubiquitin C, Cyclophilin A, TATA-box binding protein, and 14-3-3ζ-to ensure robust normalization across experimental setups. The results revealed that the protein expression of 14-3-3ζ was uniform in all samples, thereby validating its suitability as a stable housekeeping protein. The findings are important while studying the RCT pathology in a clinically relevant animal model, like swine, which mimics human RCT and provides translationally significant findings. Thus, the 14-3-3ζ protein will be an ideal housekeeping gene in the design of experiments utilizing musculoskeletal tissues.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.