PLGA/TPGS nanoparticles for docetaxel delivery: the pegylation effect on nanoparticle physicochemical properties and uptake and cytotoxicity in prostate cancer cells.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Lívia de Queiróz Carvalho Silva, Giovanni Loureiro Raspantini, Juliana Palma Abriata, Marcela Tavares Luiz, Ana Carolina Cruz de Sousa, Thais da Silva Moreira, Emanuel Paula Magalhães, Ramon Róseo Paula Pessoa Bezerra de Menezes, Raquel Petrilli, Juliana Maldonado Marchetti, Josimar O Eloy
{"title":"PLGA/TPGS nanoparticles for docetaxel delivery: the pegylation effect on nanoparticle physicochemical properties and uptake and cytotoxicity in prostate cancer cells.","authors":"Lívia de Queiróz Carvalho Silva, Giovanni Loureiro Raspantini, Juliana Palma Abriata, Marcela Tavares Luiz, Ana Carolina Cruz de Sousa, Thais da Silva Moreira, Emanuel Paula Magalhães, Ramon Róseo Paula Pessoa Bezerra de Menezes, Raquel Petrilli, Juliana Maldonado Marchetti, Josimar O Eloy","doi":"10.1016/j.xphs.2025.103766","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is the most common malignancy in men worldwide and docetaxel (DTX) is the treatment of choice. However, both the drug and formulation excipients for drug solubilization can cause side effects. In this context, the development of polymeric nanoparticles offers advantages to improve drug delivery and reduce toxicity. In the present work, factorial design was used to evaluate the effect of the amount of poly(L-lactide-co-glycolide) (PLGA) or poly(L-lactide-co-glycolide acid-polyethylene glycol) (PLGA-PEG), D-Alpha-Tocopheryl Polyethylene Glycol Succinate (TPGS) and ratio between aqueous and oily phases on the nanoparticle characteristics. The nanocarriers were characterized regarding particle size, polydispersity, zeta potential, DTX encapsulation efficiency, morphology by transmission electron microscopy, DSC, TGA and FTIR. It was evaluated in vitro for cytotoxicity and cellular uptake in prostate cancer cells. Pegylated nanoparticles, which have a different composition (TPGS%, AP:OP ratio), reduced the nanoparticle size to 105.97 ± 5.16 nm, in PDI 0.13 ± 0.03, zeta potential of -34.73 ± 1.19 mV and increased the encapsulation efficiency to 96.78 ± 1.20%. Characterization by DSC, TGA and FTIR confirmed drug encapsulation and showed colloidal stability. Pegylated nanoparticles were more stable upon serum incubation and adsorbed less proteins. In conclusion, the pegylation of the nanoparticles affected the physicochemical parameters. Also, the pegylation of nanoparticles decreased uptake by macrophages. Finally, cellular uptake and cell cytotoxicity were higher in tumor cells when compared to non-tumor cells, although they were not affected by pegylation.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":"103766"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2025.103766","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer is the most common malignancy in men worldwide and docetaxel (DTX) is the treatment of choice. However, both the drug and formulation excipients for drug solubilization can cause side effects. In this context, the development of polymeric nanoparticles offers advantages to improve drug delivery and reduce toxicity. In the present work, factorial design was used to evaluate the effect of the amount of poly(L-lactide-co-glycolide) (PLGA) or poly(L-lactide-co-glycolide acid-polyethylene glycol) (PLGA-PEG), D-Alpha-Tocopheryl Polyethylene Glycol Succinate (TPGS) and ratio between aqueous and oily phases on the nanoparticle characteristics. The nanocarriers were characterized regarding particle size, polydispersity, zeta potential, DTX encapsulation efficiency, morphology by transmission electron microscopy, DSC, TGA and FTIR. It was evaluated in vitro for cytotoxicity and cellular uptake in prostate cancer cells. Pegylated nanoparticles, which have a different composition (TPGS%, AP:OP ratio), reduced the nanoparticle size to 105.97 ± 5.16 nm, in PDI 0.13 ± 0.03, zeta potential of -34.73 ± 1.19 mV and increased the encapsulation efficiency to 96.78 ± 1.20%. Characterization by DSC, TGA and FTIR confirmed drug encapsulation and showed colloidal stability. Pegylated nanoparticles were more stable upon serum incubation and adsorbed less proteins. In conclusion, the pegylation of the nanoparticles affected the physicochemical parameters. Also, the pegylation of nanoparticles decreased uptake by macrophages. Finally, cellular uptake and cell cytotoxicity were higher in tumor cells when compared to non-tumor cells, although they were not affected by pegylation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
13.20%
发文量
367
审稿时长
33 days
期刊介绍: The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信