Effectiveness of manufacturing annealing temperature on sterilization and depyrogenation of closed ampoules compared with other techniques.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Ahmed M Rashed, Ahmed M A Hetta, Zeinab S Hashem, Mo'men H El-Katatny
{"title":"Effectiveness of manufacturing annealing temperature on sterilization and depyrogenation of closed ampoules compared with other techniques.","authors":"Ahmed M Rashed, Ahmed M A Hetta, Zeinab S Hashem, Mo'men H El-Katatny","doi":"10.1016/j.xphs.2025.103769","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of endotoxin in the bloodstream can lead to unexpected fever and, in severe cases, endotoxemia and bacteremia that can lead to death. The reduction of bacterial endotoxin, known as depyrogenation, is crucial for preparing primary packaging components like ampoules for use in injectable drug products. The durability of glass ampoules depends on the proper annealing process. If glass is not annealed correctly, it is prone to cracking or shattering from even small changes in temperature or from mechanical shock or stress. To evaluate the effectiveness of sterilization and depyrogenation, a dry heat oven at 250°C was used for 30 minutes. The Limulus Amebocyte Lysate (LAL) assay was utilized to detect endotoxin, and efficient sterilization and depyrogenation were observed at this temperature. The impact of heating glass ampoules to various temperatures on the process of sterilization and depyrogenation was studied. This investigation covered a range of temperatures (250°C - 550°C), and included holding stage times (105, 120, and 200 seconds) corresponding to the belt speed. The removal of endotoxins was achieved by exposing to temperatures from 350°C to 550°C for specific time intervals and at 300°C with an exposure time of 200 seconds. The absence of endotoxin was observed when annealing glass ampoules at 500°C for 105 seconds, regardless of the ampoules' size. Alternative methods for testing depyrogenation of sealed ampoules, such as ethylene oxide (EtO), sodium hydroxide (NaOH), and hydrochloric acid (HCl), were also demonstrated to have a clear comparison against temperature which considered the best effective economic method . This research indicates that annealing sealed glass ampoules at specific temperatures can serve as a replacement for sterilization and depyrogenation processes prior to filling, leading to savings in time, labor, machine work, energy, and cost.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":"103769"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2025.103769","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of endotoxin in the bloodstream can lead to unexpected fever and, in severe cases, endotoxemia and bacteremia that can lead to death. The reduction of bacterial endotoxin, known as depyrogenation, is crucial for preparing primary packaging components like ampoules for use in injectable drug products. The durability of glass ampoules depends on the proper annealing process. If glass is not annealed correctly, it is prone to cracking or shattering from even small changes in temperature or from mechanical shock or stress. To evaluate the effectiveness of sterilization and depyrogenation, a dry heat oven at 250°C was used for 30 minutes. The Limulus Amebocyte Lysate (LAL) assay was utilized to detect endotoxin, and efficient sterilization and depyrogenation were observed at this temperature. The impact of heating glass ampoules to various temperatures on the process of sterilization and depyrogenation was studied. This investigation covered a range of temperatures (250°C - 550°C), and included holding stage times (105, 120, and 200 seconds) corresponding to the belt speed. The removal of endotoxins was achieved by exposing to temperatures from 350°C to 550°C for specific time intervals and at 300°C with an exposure time of 200 seconds. The absence of endotoxin was observed when annealing glass ampoules at 500°C for 105 seconds, regardless of the ampoules' size. Alternative methods for testing depyrogenation of sealed ampoules, such as ethylene oxide (EtO), sodium hydroxide (NaOH), and hydrochloric acid (HCl), were also demonstrated to have a clear comparison against temperature which considered the best effective economic method . This research indicates that annealing sealed glass ampoules at specific temperatures can serve as a replacement for sterilization and depyrogenation processes prior to filling, leading to savings in time, labor, machine work, energy, and cost.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
13.20%
发文量
367
审稿时长
33 days
期刊介绍: The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信