Auditory localization of multiple stationary electric vehicles.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Leon Müller, Jens Forssén, Wolfgang Kropp
{"title":"Auditory localization of multiple stationary electric vehicles.","authors":"Leon Müller, Jens Forssén, Wolfgang Kropp","doi":"10.1121/10.0036248","DOIUrl":null,"url":null,"abstract":"<p><p>Current regulations require electric vehicles to be equipped with acoustic vehicle alerting systems (AVAS), radiating artificial warning sounds at low driving speeds. The requirements for these sounds are based on human subject studies, primarily estimating detection time for single vehicles. This paper presents a listening experiment assessing the accuracy and time of localization using a concealed array of 24 loudspeakers. Static single- and multiple-vehicle scenarios were compared using combustion engine noise, a two-tone AVAS, a multi-tone AVAS, and a narrowband noise AVAS. The results of 52 participants show a significant effect of the sound type on localization accuracy and time for all evaluated scenarios (p<0.001). Post-hoc tests revealed that the two-tone AVAS is localized significantly worse than the other signals, especially when simultaneously presenting two or three vehicles with the same type of sound. The multi-tone and noise AVAS are generally on par but localized worse than combustion noise for multi-vehicle scenarios. For multiple vehicles, the percentage of failed localizations drastically increased for all three AVAS signals, with the two-tone AVAS performing worst. These results indicate that signals typically performing well in a single-vehicle detection task are not necessarily easy to localize, especially not in multi-vehicle scenarios.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 3","pages":"2029-2041"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0036248","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Current regulations require electric vehicles to be equipped with acoustic vehicle alerting systems (AVAS), radiating artificial warning sounds at low driving speeds. The requirements for these sounds are based on human subject studies, primarily estimating detection time for single vehicles. This paper presents a listening experiment assessing the accuracy and time of localization using a concealed array of 24 loudspeakers. Static single- and multiple-vehicle scenarios were compared using combustion engine noise, a two-tone AVAS, a multi-tone AVAS, and a narrowband noise AVAS. The results of 52 participants show a significant effect of the sound type on localization accuracy and time for all evaluated scenarios (p<0.001). Post-hoc tests revealed that the two-tone AVAS is localized significantly worse than the other signals, especially when simultaneously presenting two or three vehicles with the same type of sound. The multi-tone and noise AVAS are generally on par but localized worse than combustion noise for multi-vehicle scenarios. For multiple vehicles, the percentage of failed localizations drastically increased for all three AVAS signals, with the two-tone AVAS performing worst. These results indicate that signals typically performing well in a single-vehicle detection task are not necessarily easy to localize, especially not in multi-vehicle scenarios.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信