Zhimin Zhu , Minjun Li , Qin Xu , Liqing Huang , Huan Zhou , Weiwei Wang , Qisheng Wang , Feng Yu
{"title":"Mechanistic insights into cyclodextrins as substrates and inhibitors of GH57 family amylopullulanase from Aquifex aeolicus","authors":"Zhimin Zhu , Minjun Li , Qin Xu , Liqing Huang , Huan Zhou , Weiwei Wang , Qisheng Wang , Feng Yu","doi":"10.1016/j.jsb.2025.108199","DOIUrl":null,"url":null,"abstract":"<div><div>Maltooligosaccharides (MOs) have gained significant attention in the food and pharmaceutical industries owing to their valuable functional properties, including controlled sweetness, digestibility, and enhanced bioavailability. However, conventional MOs is production involves complex processing steps and significant production costs. A potential high-efficiency synthesis of specific MOs can be achieved through the ring-opening reaction of cyclodextrins (CDs) catalyzed by amylolytic enzymes. In this study, we analyze the catalytic conversion of α-, β-, and γ-CDs by a GH57 family amylopullulanase from <em>Aquifex aeolicus</em> (AaApu) using thin-layer chromatography (TLC). Our findings demonstrate that AaApu has a substrate specificity for γ-CD, while all three CDs exert competitive inhibition on pullulan hydrolysis. To elucidate the molecular mechanism of CDs as inhibitor and substrate of amylopullulanase, we determined high-resolution crystal structures of AaApu (wild-type and D352N) in complex with α-, β-, and γ-CD through co-crystallization. These findings establish a structure–function framework for understanding the bifunctional nature of CDs as both substrates and inhibitors in GH57 amylopullulanases.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 2","pages":"Article 108199"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000346","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Maltooligosaccharides (MOs) have gained significant attention in the food and pharmaceutical industries owing to their valuable functional properties, including controlled sweetness, digestibility, and enhanced bioavailability. However, conventional MOs is production involves complex processing steps and significant production costs. A potential high-efficiency synthesis of specific MOs can be achieved through the ring-opening reaction of cyclodextrins (CDs) catalyzed by amylolytic enzymes. In this study, we analyze the catalytic conversion of α-, β-, and γ-CDs by a GH57 family amylopullulanase from Aquifex aeolicus (AaApu) using thin-layer chromatography (TLC). Our findings demonstrate that AaApu has a substrate specificity for γ-CD, while all three CDs exert competitive inhibition on pullulan hydrolysis. To elucidate the molecular mechanism of CDs as inhibitor and substrate of amylopullulanase, we determined high-resolution crystal structures of AaApu (wild-type and D352N) in complex with α-, β-, and γ-CD through co-crystallization. These findings establish a structure–function framework for understanding the bifunctional nature of CDs as both substrates and inhibitors in GH57 amylopullulanases.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure