Assessing measurement consistency of a diffusion tensor imaging (DTI) quality control (QC) anisotropy phantom.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Nicholas Simard, Alec D Fernback, Norman B Konyer, Fergal Kerins, Michael D Noseworthy
{"title":"Assessing measurement consistency of a diffusion tensor imaging (DTI) quality control (QC) anisotropy phantom.","authors":"Nicholas Simard, Alec D Fernback, Norman B Konyer, Fergal Kerins, Michael D Noseworthy","doi":"10.1007/s10334-025-01244-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We evaluated a quality control (QC) phantom designed to mimic diffusion characteristics and white matter fiber tracts in the brain. We hypothesized that acquisition of diffusion tensor imaging (DTI) data on different vendors and over multiple repeated measures would not contribute to significant variability in calculated diffusion tensor scalar metrics such as fractional anisotropy (FA) and mean diffusivity (MD).</p><p><strong>Materials and methods: </strong>The DTI QC phantom was scanned using a 32-direction DTI sequence on General Electric (GE), Siemens, and Philips 3 Tesla scanners. Motion probing gradients (MPGs) were investigated as a source of variance in our statistical design, and data were acquired on GE and Siemens scanners using GE, Siemens, and Philips vendor MPGs for 32 directions. In total, 8 repeated scans were made for each GE/Siemens combination of vendor and MPGs with 8 repeated scans on a Philips machine using its stock DTI sequence. Data were analyzed using 2-way ANOVAs to investigate repeat scan and vendor variances and 3-way ANOVAs with repeat, MPG, and vendor as factors.</p><p><strong>Results: </strong>No statistical differences (i.e., P > 0.05) were found in any DTI scalar metrics (FA, MD) or for any factor, suggesting system constancy across imaging platforms and the specified phantom's reliability and reproducibility across vendors and conditions.</p><p><strong>Discussion: </strong>A DTI QC phantom demonstrates that DTI measurements maintain their consistency across different MRI systems and can contribute to a standard that is more reliable for quantitative MRI analyses.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01244-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: We evaluated a quality control (QC) phantom designed to mimic diffusion characteristics and white matter fiber tracts in the brain. We hypothesized that acquisition of diffusion tensor imaging (DTI) data on different vendors and over multiple repeated measures would not contribute to significant variability in calculated diffusion tensor scalar metrics such as fractional anisotropy (FA) and mean diffusivity (MD).

Materials and methods: The DTI QC phantom was scanned using a 32-direction DTI sequence on General Electric (GE), Siemens, and Philips 3 Tesla scanners. Motion probing gradients (MPGs) were investigated as a source of variance in our statistical design, and data were acquired on GE and Siemens scanners using GE, Siemens, and Philips vendor MPGs for 32 directions. In total, 8 repeated scans were made for each GE/Siemens combination of vendor and MPGs with 8 repeated scans on a Philips machine using its stock DTI sequence. Data were analyzed using 2-way ANOVAs to investigate repeat scan and vendor variances and 3-way ANOVAs with repeat, MPG, and vendor as factors.

Results: No statistical differences (i.e., P > 0.05) were found in any DTI scalar metrics (FA, MD) or for any factor, suggesting system constancy across imaging platforms and the specified phantom's reliability and reproducibility across vendors and conditions.

Discussion: A DTI QC phantom demonstrates that DTI measurements maintain their consistency across different MRI systems and can contribute to a standard that is more reliable for quantitative MRI analyses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信